mpri-funcprog-project/coq/Sequences.v
2017-09-28 10:36:07 +02:00

322 lines
7.3 KiB
Coq

(** A library of relation operators defining sequences of transitions
and useful properties about them. Originally by Xavier Leroy, with
some improvements and additions by François Pottier. *)
Set Implicit Arguments.
Section SEQUENCES.
Variable A: Type.
Implicit Types R S : A -> A -> Prop.
Implicit Types P : A -> Prop.
(** Zero, one or several transitions: reflexive, transitive closure of [R]. *)
Inductive star R : A -> A -> Prop :=
| star_refl:
forall a,
star R a a
| star_step:
forall a b c,
R a b -> star R b c -> star R a c.
Hint Constructors star.
Lemma star_refl_eq:
forall R a b, a = b -> star R a b.
Proof.
intros. subst. eauto.
Qed.
Lemma star_one:
forall R a b, R a b -> star R a b.
Proof.
eauto.
Qed.
Lemma star_trans:
forall R a b, star R a b ->
forall c, star R b c -> star R a c.
Proof.
induction 1; eauto.
Qed.
Lemma star_covariant:
forall R S,
(forall a b, R a b -> S a b) ->
(forall a b, star R a b -> star S a b).
Proof.
induction 2; eauto.
Qed.
(* If [R] preserves some property [P], then [star R] preserves [P]. *)
Lemma star_implication:
forall P R,
(forall a1 a2, R a1 a2 -> P a1 -> P a2) ->
(forall a1 a2, star R a1 a2 -> P a1 -> P a2).
Proof.
induction 2; eauto.
Qed.
(* The same implication holds in the reverse direction (right to left). *)
Lemma star_implication_reversed:
forall P R,
(forall a1 a2, R a1 a2 -> P a2 -> P a1) ->
(forall a1 a2, star R a1 a2 -> P a2 -> P a1).
Proof.
induction 2; eauto.
Qed.
(** One or several transitions: transitive closure of [R]. *)
Inductive plus R: A -> A -> Prop :=
| plus_left:
forall a b c,
R a b -> star R b c -> plus R a c.
Hint Constructors plus.
Lemma plus_one:
forall R a b, R a b -> plus R a b.
Proof.
eauto.
Qed.
Lemma plus_star:
forall R a b, plus R a b -> star R a b.
Proof.
inversion 1; eauto.
Qed.
Lemma plus_covariant:
forall R S,
(forall a b, R a b -> S a b) ->
(forall a b, plus R a b -> plus S a b).
Proof.
induction 2; eauto using star_covariant.
Qed.
(* A direct induction principle for [plus]: when [plus R a b] holds,
either there is just one step, or there is one, followed with more. *)
Lemma plus_ind_direct:
forall R P : A -> A -> Prop,
(forall a b, R a b -> P a b) ->
(forall a b c, R a b -> plus R b c -> P b c -> P a c) ->
forall a b, plus R a b -> P a b.
Proof.
intros ? ? Hone Hmore a c Hplus. destruct Hplus as [ ? b ? hR hRStar ].
generalize b c hRStar a hR.
clear b c hRStar a hR.
induction 1; eauto.
Qed.
Lemma plus_star_trans:
forall R a b c, plus R a b -> star R b c -> plus R a c.
Proof.
inversion 1; eauto using star_trans.
Qed.
Lemma star_plus_trans:
forall R a b c, star R a b -> plus R b c -> plus R a c.
Proof.
inversion 1; inversion 1; eauto using star_trans.
Qed.
Lemma plus_trans:
forall R a b c, plus R a b -> plus R b c -> plus R a c.
Proof.
eauto using plus_star_trans, plus_star.
Qed.
Lemma plus_right:
forall R a b c, star R a b -> R b c -> plus R a c.
Proof.
eauto using star_plus_trans.
Qed.
(** Absence of transitions. *)
Definition irred R a :=
forall b, ~ R a b.
Definition halts R a :=
exists b, star R a b /\ irred R b.
(** Infinitely many transitions. *)
CoInductive infseq R : A -> Prop :=
| infseq_step:
forall a b,
R a b -> infseq R b -> infseq R a.
(** Properties of [irred]. *)
Lemma irred_irred:
forall R t1 u1,
irred R t1 ->
(forall u2, R u1 u2 -> exists t2, R t1 t2) ->
irred R u1.
Proof.
unfold irred. intros ? ? ? Hirred Himpl u2 Hu2.
destruct (Himpl _ Hu2) as [ t2 Ht2 ].
eapply Hirred. eauto.
Qed.
Lemma irreducible_terms_do_not_reduce:
forall R a b, irred R a -> R a b -> False.
Proof.
unfold irred, not. eauto.
Qed.
(** Coinduction principles to show the existence of infinite sequences. *)
Lemma infseq_coinduction_principle:
forall R P,
(forall a, P a -> exists b, R a b /\ P b) ->
forall a, P a -> infseq R a.
Proof.
intros ? ? Hstep. cofix COINDHYP; intros a hPa.
destruct (Hstep a hPa) as (?&?&?).
econstructor; eauto.
Qed.
Lemma infseq_coinduction_principle_2:
forall R P a,
P a ->
(forall a, P a -> exists b, plus R a b /\ P b) ->
infseq R a.
Proof.
intros ? ? ? ? Hinv.
apply infseq_coinduction_principle with
(P := fun a => exists b, star R a b /\ P b).
(* Proof that the invariant is preserved. *)
{ clear dependent a.
intros a (b&hStar&hPb).
inversion hStar; subst.
{ destruct (Hinv b hPb) as [c [hPlus ?]].
inversion hPlus; subst. eauto. }
{ eauto. }
}
(* Proof that the invariant initially holds. *)
{ eauto. }
Qed.
Lemma infseq_plus:
forall R a,
infseq (plus R) a ->
infseq R a.
Proof.
intros. eapply infseq_coinduction_principle_2
with (P := fun a => infseq (plus R) a).
{ eauto. }
clear dependent a. intros a hInfSeq.
destruct hInfSeq. eauto.
Qed.
(** An example of use of [infseq_coinduction_principle]. *)
Lemma infseq_alternate_characterization:
forall R a,
(forall b, star R a b -> exists c, R b c) ->
infseq R a.
Proof.
intros R. apply infseq_coinduction_principle.
intros a Hinv. destruct (Hinv a); eauto.
Qed.
Lemma infseq_covariant:
forall R S,
(forall a b, R a b -> S a b) ->
forall a, infseq R a -> infseq S a.
Proof.
intros. eapply infseq_coinduction_principle
with (P := fun a => infseq R a); [| eauto ].
clear dependent a. intros a hInfSeq.
destruct hInfSeq. eauto.
Qed.
(** A sequence either is infinite or stops on an irreducible term.
This property needs excluded middle from classical logic. *)
Require Import Classical.
Lemma infseq_or_finseq:
forall R a,
infseq R a \/ halts R a.
Proof.
intros.
destruct (classic (forall b, star R a b -> exists c, R b c)).
{ left. eauto using infseq_alternate_characterization. }
{ right.
destruct (not_all_ex_not _ _ H) as [b Hb].
destruct (imply_to_and _ _ Hb).
unfold halts, irred, not. eauto. }
Qed.
(** Additional properties for deterministic transition relations. *)
Section DETERMINISM.
Variable R : A -> A -> Prop.
Hypothesis R_determ: forall a b c, R a b -> R a c -> b = c.
Ltac R_determ :=
match goal with h1: R ?a ?b1, h2: R ?a ?b2 |- _ =>
assert (b1 = b2); [ eauto | subst ]
end.
(** Uniqueness of transition sequences. *)
Lemma star_star_inv:
forall a b, star R a b -> forall c, star R a c -> star R b c \/ star R c b.
Proof.
induction 1; inversion 1; intros; subst; try R_determ; eauto.
Qed.
Lemma finseq_unique:
forall a b b',
star R a b -> irred R b ->
star R a b' -> irred R b' ->
b = b'.
Proof.
unfold irred, not.
intros ? ? ? Hab Hirred Hab' Hirred'.
destruct (star_star_inv Hab Hab') as [ Hbb' | Hbb' ];
inversion Hbb'; subst;
solve [ eauto | elimtype False; eauto ].
Qed.
Lemma infseq_star_inv:
forall a b, star R a b -> infseq R a -> infseq R b.
Proof.
induction 1; inversion 1; intros; try R_determ; eauto.
Qed.
Lemma infseq_finseq_excl:
forall a b,
star R a b -> irred R b -> infseq R a -> False.
Proof.
unfold irred, not. intros.
assert (h: infseq R b). { eauto using infseq_star_inv. }
inversion h. eauto.
Qed.
Lemma infseq_halts_excl:
forall a,
halts R a -> infseq R a -> False.
Proof.
intros ? (?&?&?). eauto using infseq_finseq_excl.
Qed.
End DETERMINISM.
End SEQUENCES.
Hint Resolve star_refl star_step star_one star_trans plus_left plus_one
plus_star plus_star_trans star_plus_trans plus_right: sequences.