139 lines
3.8 KiB
Coq
139 lines
3.8 KiB
Coq
|
Require Import MyTactics.
|
||
|
Require Import Sequences.
|
||
|
Require Import Relations.
|
||
|
Require Import LambdaCalculusSyntax.
|
||
|
Require Import LambdaCalculusValues.
|
||
|
Require Import LambdaCalculusReduction.
|
||
|
Require Import LambdaCalculusStandardization.
|
||
|
Require Import CPSDefinition.
|
||
|
Require Import CPSSpecialCases.
|
||
|
Require Import CPSSimulation.
|
||
|
|
||
|
(* [cbv+ . pcbv] implies [pcbv*]. *)
|
||
|
|
||
|
Lemma technical_inclusion_0:
|
||
|
inclusion plus_cbv_pcbv (star pcbv).
|
||
|
Proof.
|
||
|
intros t1 t2. unfold composition. intros. unpack.
|
||
|
eauto 6 using cbv_subset_pcbv, plus_covariant with sequences.
|
||
|
Qed.
|
||
|
|
||
|
(* [(cbv+ . pcbv)*] implies [pcbv*]. *)
|
||
|
|
||
|
Lemma technical_inclusion_1:
|
||
|
inclusion (star plus_cbv_pcbv) (star pcbv).
|
||
|
Proof.
|
||
|
eapply inclusion_transitive; [| eapply inclusion_star_star ].
|
||
|
eapply star_covariant_inclusion.
|
||
|
eapply technical_inclusion_0.
|
||
|
Qed.
|
||
|
|
||
|
(* A simplified simulation diagram. *)
|
||
|
|
||
|
Lemma simulation_cbv_pcbv:
|
||
|
forall t t',
|
||
|
star cbv t t' ->
|
||
|
star pcbv (cps t init) (cps t' init).
|
||
|
Proof.
|
||
|
intros t t' Hred.
|
||
|
(* According to the simulation diagram (iterated), [cps t c] reduces to
|
||
|
[cps v c] via a series of [cbv] and [pcbv] steps. *)
|
||
|
destruct (star_diamond_left _ _ _ cps_init_simulation _ _ Hred _ eq_refl)
|
||
|
as (?&?&?). subst.
|
||
|
(* Thus, [cps t c] reduces to [cps t' c] via [pcbv*]. *)
|
||
|
eapply technical_inclusion_1. eauto.
|
||
|
Qed.
|
||
|
|
||
|
(* If [t] diverges, then [cps t init] diverges, too. *)
|
||
|
|
||
|
Lemma cps_preserves_divergence:
|
||
|
forall t,
|
||
|
infseq cbv t ->
|
||
|
infseq cbv (cps t init).
|
||
|
Proof.
|
||
|
intros.
|
||
|
eapply pcbv_preserves_divergence.
|
||
|
eapply infseq_simulation.
|
||
|
{ eapply cps_init_simulation. }
|
||
|
{ eauto. }
|
||
|
{ tauto. }
|
||
|
Qed.
|
||
|
|
||
|
(* If [t] converges to a value [v], then [cps t init] converges to a value [w].
|
||
|
Furthermore, [w] reduces to [cpsv v] via a number of parallel reduction
|
||
|
steps. *)
|
||
|
|
||
|
Lemma cps_preserves_convergence:
|
||
|
forall t v,
|
||
|
star cbv t v ->
|
||
|
is_value v ->
|
||
|
exists w,
|
||
|
star cbv (cps t init) w /\
|
||
|
is_value w /\
|
||
|
star pcbv w (cpsv v).
|
||
|
Proof.
|
||
|
intros ? ? Htv Hv.
|
||
|
(* [cps t init] reduces to [cps v init] via [pcbv*]. *)
|
||
|
generalize (simulation_cbv_pcbv _ _ Htv); intro Hred.
|
||
|
(* [cps v init] is [cpsv v]. *)
|
||
|
assert (Heq: cps v init = cpsv v).
|
||
|
{ cps. reflexivity. }
|
||
|
(* Thus, [cps t init] reduces to [cpsv v] via [pcbv*]. *)
|
||
|
rewrite Heq in Hred.
|
||
|
(* Bifurcate this reduction sequence. *)
|
||
|
forward1 crarys_lemma9. clear Hred.
|
||
|
(* This gives us the value [w] that we are looking for. *)
|
||
|
eexists. split. eauto. split.
|
||
|
{ eauto using
|
||
|
(star_implication_reversed _ ipcbv_preserves_values_reversed)
|
||
|
with obvious. }
|
||
|
{ eauto using star_covariant, ipcbv_subset_pcbv. }
|
||
|
Qed.
|
||
|
|
||
|
(* If [t] is stuck, then [cps t c] is stuck. Not a really interesting
|
||
|
property, but we prove it, just so that no stone is left unturned. *)
|
||
|
|
||
|
Lemma cps_preserves_stuck:
|
||
|
forall t,
|
||
|
stuck t ->
|
||
|
forall c,
|
||
|
stuck (cps t c).
|
||
|
Proof.
|
||
|
induction 1; intros.
|
||
|
(* StuckApp *)
|
||
|
{ rewrite cps_app_value_value by eauto.
|
||
|
eapply StuckAppL.
|
||
|
eapply StuckApp; [ obvious | obvious |].
|
||
|
(* Only [Lam] is translated to [Lam]. *)
|
||
|
intros. destruct v1.
|
||
|
{ cpsv. congruence. }
|
||
|
{ cpsv. false. congruence. }
|
||
|
{ obvious. }
|
||
|
{ obvious. }
|
||
|
}
|
||
|
(* StuckAppL *)
|
||
|
{ cps. eauto. }
|
||
|
(* StuckAppR *)
|
||
|
{ rewrite cps_app_value by eauto. eauto. }
|
||
|
(* StuckLetL *)
|
||
|
{ cps. eauto. }
|
||
|
Qed.
|
||
|
|
||
|
(* As a corollary, the property of going wrong is preserved by the CPS
|
||
|
transformation. *)
|
||
|
|
||
|
Lemma cps_preserves_going_wrong:
|
||
|
forall t,
|
||
|
goes_wrong t ->
|
||
|
goes_wrong (cps t init).
|
||
|
Proof.
|
||
|
intros ? [ t' [ Htt' ? ]].
|
||
|
(* [cps t init] reduces to [cps t' init] via [pcbv*]. *)
|
||
|
generalize (simulation_cbv_pcbv _ _ Htt'); intro Hred.
|
||
|
(* Bifurcate this reduction sequence. *)
|
||
|
forward1 crarys_lemma9. clear Hred.
|
||
|
(* This gives us the stuck term we are looking for. *)
|
||
|
eexists. split. eauto.
|
||
|
eauto using cps_preserves_stuck, reverse_star_ipcbv_preserves_stuck.
|
||
|
Qed.
|