714 lines
24 KiB
Coq
714 lines
24 KiB
Coq
(* Projet Coq - WP - MPRI 2.7.1 *)
|
|
|
|
(***** Partie 1 : definition de While ****************************************)
|
|
|
|
Require Import ZArith.BinInt.
|
|
Require Import FunctionalExtensionality.
|
|
Require Import Omega.
|
|
Import Z.
|
|
|
|
Definition Var := nat.
|
|
Definition Mem := Var -> Z.
|
|
Definition Expr:= Mem -> Z.
|
|
|
|
Inductive SynAssert : Type:=
|
|
| ATop: SynAssert
|
|
| ABot: SynAssert
|
|
| ANeg: SynAssert -> SynAssert
|
|
| AAnd: SynAssert -> SynAssert -> SynAssert
|
|
| AOr: SynAssert -> SynAssert -> SynAssert
|
|
| AImplies: SynAssert -> SynAssert -> SynAssert
|
|
| AExpr: Expr -> SynAssert
|
|
| AForall: Var -> SynAssert -> SynAssert
|
|
| AExists: Var -> SynAssert -> SynAssert
|
|
| ASubstZ: Var -> Z -> SynAssert -> SynAssert
|
|
| ASubstE: Var -> Expr -> SynAssert -> SynAssert.
|
|
|
|
Inductive Instr : Type :=
|
|
| skip: Instr
|
|
| abort: Instr
|
|
| assign: Var -> Expr -> Instr
|
|
| seq: Instr -> Instr -> Instr
|
|
| ifelse: Expr -> Instr -> Instr -> Instr
|
|
| while: SynAssert -> Expr -> Instr -> Instr.
|
|
|
|
Definition ifonly (exp: Expr) (inst: Instr) : Instr :=
|
|
ifelse exp inst skip.
|
|
|
|
(***** CPO *******************************************************************)
|
|
|
|
Fixpoint nat_eq x y :=
|
|
match x, y with
|
|
| 0, 0 => true
|
|
| 0, S _ => false
|
|
| S _, 0 => false
|
|
| S x0, S y0 => nat_eq x0 y0
|
|
end.
|
|
|
|
Definition Sequence (S: Type) := nat -> S.
|
|
|
|
Inductive cpo (T: Type): Type :=
|
|
| CpoError: (cpo T)
|
|
| CpoElem: T -> (cpo T).
|
|
|
|
Definition cpo_leq: forall (T: Type), cpo T -> cpo T -> Prop :=
|
|
fun T x y => match x, y with
|
|
| CpoError _, _ => True
|
|
| CpoElem _ x0, CpoElem _ y0 => x0 = y0
|
|
| _, _ => False
|
|
end.
|
|
Arguments cpo_leq {T} _ _.
|
|
Infix "cpo<=" := cpo_leq (at level 100).
|
|
|
|
Definition is_chain: forall (T: Type), Sequence (cpo T) -> Prop :=
|
|
fun T chain => forall (n: nat), (chain n) cpo<= (chain (S n)).
|
|
Arguments is_chain {T} _.
|
|
|
|
Definition is_lub_of: forall (T: Type), Sequence (cpo T) -> cpo T -> Prop :=
|
|
fun T chain elt => forall (n: nat), (chain n) cpo<= elt.
|
|
Arguments is_lub_of {T} _ _.
|
|
|
|
Axiom find_lub: forall (T: Type), Sequence (cpo T) -> cpo T.
|
|
Arguments find_lub {T} _.
|
|
|
|
Axiom find_lub_correct:
|
|
forall (T: Type), forall (chain: Sequence (cpo T)),
|
|
is_chain chain -> is_lub_of chain (find_lub chain).
|
|
Arguments find_lub_correct {T} {chain} _.
|
|
|
|
Axiom lub_is_first_correct:
|
|
forall (T: Type), forall (n: nat), forall (chain: Sequence (cpo T)),
|
|
is_chain chain
|
|
-> chain n = CpoError T
|
|
-> chain (S n) <> CpoError T
|
|
-> find_lub chain = chain (S n).
|
|
(***** Interpretation ********************************************************)
|
|
|
|
Definition subst: Mem -> Var -> Z -> Mem :=
|
|
fun (m: Mem) (v: Var) (z: Z) (v2: Var) =>
|
|
if nat_eq v v2 then z else m v2.
|
|
Notation "m [ x <- z ]" := (subst m x z) (at level 50, left associativity).
|
|
|
|
Definition MemCpo := cpo Mem.
|
|
Definition MemError := CpoError Mem.
|
|
Definition MemElem := CpoElem Mem.
|
|
|
|
Fixpoint interp (inst: Instr) (mem: MemCpo) : MemCpo :=
|
|
match mem with
|
|
| CpoError _ => MemError
|
|
| CpoElem _ mem0 =>
|
|
match inst with
|
|
| skip => MemElem mem0
|
|
| abort => MemError
|
|
| assign v e => (MemElem (mem0 [v <- (e mem0)]))
|
|
| seq instr1 instr2 => interp instr2 (interp instr1 (MemElem mem0))
|
|
| ifelse guard instrIf instrElse =>
|
|
if ((guard mem0) =? 0) % Z
|
|
then interp instrElse mem
|
|
else interp instrIf mem
|
|
| while _ guard body =>
|
|
let fix while_chain (mem: MemCpo) (n: nat): MemCpo :=
|
|
match n with
|
|
| 0 => mem
|
|
| S m =>
|
|
match while_chain (MemElem mem0) m with
|
|
| CpoError _ => MemError
|
|
| CpoElem _ submem =>
|
|
if ((guard submem) =? 0) % Z
|
|
then interp body (MemElem submem)
|
|
else mem
|
|
end
|
|
end
|
|
in find_lub (fun n =>
|
|
match while_chain (MemElem mem0) n with
|
|
| CpoError _ => MemError
|
|
| CpoElem _ submem =>
|
|
if ((guard submem) =? 0) % Z
|
|
then MemError
|
|
else MemElem submem
|
|
end)
|
|
end
|
|
end.
|
|
|
|
Fixpoint nth_iterate (instr: Instr) (n: nat) : Instr :=
|
|
match n with
|
|
| 0 => skip
|
|
| S m => seq (nth_iterate instr m) instr
|
|
end.
|
|
|
|
Definition satisfies_expr (mem: MemCpo) (expr: Expr) : Prop := match mem with
|
|
| CpoError _ => False
|
|
| CpoElem _ mem0 => (expr mem0 <> 0) % Z
|
|
end.
|
|
Infix "|=e" := satisfies_expr (at level 32).
|
|
|
|
Definition expr_neg (expr: Expr) : Expr :=
|
|
fun mem => match expr mem with
|
|
| 0%Z => 1%Z
|
|
| _ => 0%Z
|
|
end.
|
|
|
|
Lemma certain_termination_exists assert body guard mem :
|
|
interp (while assert guard body) mem <> MemError ->
|
|
exists n: nat,
|
|
interp (nth_iterate (ifonly guard body) n) mem |=e expr_neg guard.
|
|
Proof.
|
|
intros noError.
|
|
Admitted.
|
|
|
|
Lemma certain_termination_exists_minimal assert body guard mem :
|
|
interp (while assert guard body) mem <> MemError ->
|
|
exists n: nat,
|
|
(forall p: nat, p < n ->
|
|
interp (nth_iterate (ifonly guard body) p) mem |=e guard)
|
|
/\ interp (nth_iterate (ifonly guard body) n) mem |=e expr_neg guard.
|
|
Proof.
|
|
intros not_error.
|
|
Admitted.
|
|
|
|
Lemma unfold_one_iter (s: Instr) (m: Mem) (n: nat):
|
|
interp (nth_iterate s (S n)) (MemElem m)
|
|
= interp s (interp (nth_iterate s n) (MemElem m)).
|
|
Proof.
|
|
simpl; congruence.
|
|
Qed.
|
|
|
|
Lemma bool_prop_contradict {x: Z}:
|
|
(x <> 0)%Z -> (x =? 0)%Z = true -> False.
|
|
Proof.
|
|
intros diff equ. apply diff.
|
|
unfold eqb in equ; destruct x; simpl; trivial;
|
|
exfalso; apply (Bool.Bool.diff_false_true); assumption.
|
|
Qed.
|
|
|
|
Lemma before_n_useless_guard {body guard n mem}:
|
|
(forall p, p < n
|
|
-> (interp (nth_iterate (ifonly guard body) p) mem) |=e guard)
|
|
-> forall p, p <= n ->
|
|
(interp (nth_iterate body p) mem)
|
|
= (interp (nth_iterate (ifonly guard body) p) mem).
|
|
Proof.
|
|
intros matchGuard p infN.
|
|
induction p.
|
|
- unfold nth_iterate; trivial.
|
|
- assert (p < n). omega. assert (p <= n). omega.
|
|
apply IHp in H0 as IHp0.
|
|
destruct mem eqn:mRel; [simpl; trivial | ].
|
|
fold MemElem; rewrite (unfold_one_iter body m p);
|
|
rewrite (unfold_one_iter (ifonly guard body) m p).
|
|
fold MemElem in IHp0; rewrite IHp0.
|
|
remember (interp (nth_iterate body p) (MemElem m))
|
|
as stepMem eqn:stepMemRel.
|
|
remember (interp (nth_iterate (ifonly guard body) p) (MemElem m))
|
|
as fancyStepMem eqn:fancyStepMemRel.
|
|
specialize matchGuard with p.
|
|
apply matchGuard in H as matchGuardP.
|
|
fold MemElem in matchGuardP.
|
|
rewrite <- fancyStepMemRel in matchGuardP.
|
|
rewrite <- IHp0 in matchGuardP.
|
|
destruct fancyStepMem.
|
|
* destruct body; simpl; trivial.
|
|
* unfold satisfies_expr in matchGuardP.
|
|
destruct (guard m0 =? 0)%Z eqn:guardRel.
|
|
+ rewrite IHp0 in matchGuardP.
|
|
exfalso; apply (bool_prop_contradict matchGuardP guardRel).
|
|
+ unfold ifonly; simpl; rewrite guardRel; congruence.
|
|
Qed.
|
|
|
|
Lemma certain_termination assert body guard mem :
|
|
interp (while assert guard body) mem <> MemError ->
|
|
exists n: nat,
|
|
(interp (nth_iterate body n) mem) |=e (expr_neg guard)
|
|
/\ (forall p, p < n -> (interp (nth_iterate body p) mem) |=e guard)
|
|
/\ interp (while assert guard body) mem = interp (nth_iterate body n) mem.
|
|
Proof.
|
|
intros notError.
|
|
destruct (certain_termination_exists_minimal assert body guard mem) as [n];
|
|
trivial.
|
|
destruct H as [beforeN atN].
|
|
exists n.
|
|
split; [|split].
|
|
- assert (n <= n). omega. rewrite (before_n_useless_guard beforeN n H).
|
|
assumption.
|
|
- intros p infN. assert (p <= n). omega.
|
|
rewrite (before_n_useless_guard beforeN p H ).
|
|
apply beforeN; trivial.
|
|
- admit.
|
|
Admitted.
|
|
|
|
(***** Validite, prouvabilite pour Hoare *************************************)
|
|
|
|
Definition Assert := Mem -> Prop.
|
|
Delimit Scope assert with assert.
|
|
|
|
Definition assertTop : Assert := fun _ => True.
|
|
Definition assertBot : Assert := fun _ => False.
|
|
|
|
Definition assertNot : Assert -> Assert :=
|
|
fun orig mem => ~ (orig mem).
|
|
Notation "~ x" := (assertNot x) (at level 75, right associativity) : assert.
|
|
Definition assertAnd : Assert -> Assert -> Assert :=
|
|
fun x1 x2 mem => (x1 mem) /\ (x2 mem).
|
|
Infix "/\" := assertAnd : assert.
|
|
Definition assertOr : Assert -> Assert -> Assert :=
|
|
fun x1 x2 mem => (x1 mem) \/ (x2 mem).
|
|
Infix "\/" := assertOr : assert.
|
|
Definition assertImpl : Assert -> Assert -> Assert :=
|
|
fun x1 x2 => (~x1 \/ x2) % assert.
|
|
Infix "->" := assertImpl : assert.
|
|
Definition assertForall : Var -> Assert -> Assert :=
|
|
fun ident asser mem => forall (z: Z), asser (mem [ident <- z]).
|
|
Notation "\-/ x" := (assertForall x) (at level 90, no associativity) : assert.
|
|
Definition existsForall : Var -> Assert -> Assert :=
|
|
fun ident asser mem => exists (z: Z), asser (mem [ident <- z]).
|
|
Notation "'exists' x" := (existsForall x)
|
|
(at level 87, no associativity): assert.
|
|
Definition assertMemForall : Assert -> Assert :=
|
|
fun asser mem => forall (mem: Mem), asser mem.
|
|
Notation "'\-/m' x" := (assertMemForall x)
|
|
(at level 90, no associativity): assert.
|
|
Definition existsMemForall : Assert -> Assert :=
|
|
fun asser mem => exists (mem: Mem), asser mem.
|
|
Notation "'exists_m' x" := (existsMemForall x)
|
|
(at level 87, no associativity): assert.
|
|
|
|
Definition substAssert : Assert -> Var -> Z -> Assert :=
|
|
fun asser ident val mem => asser (mem [ident <- val]).
|
|
Notation "a [[ x <- z ]]" := (substAssert a x z)
|
|
(at level 50, left associativity).
|
|
Definition substAssertExpr : Assert -> Var -> Expr -> Assert :=
|
|
fun asser ident expr mem => asser (mem [ident <- (expr mem)]).
|
|
Notation "a [[ x <- 'expr' z ]]" := (substAssertExpr a x z)
|
|
(at level 50, left associativity).
|
|
|
|
Definition assertOfExpr : Expr -> Assert :=
|
|
fun expr mem => (expr mem <> 0)%Z.
|
|
|
|
Definition assertImplLogical (a1 a2: Assert): Prop :=
|
|
forall (m: Mem), (a1 m) -> (a2 m).
|
|
|
|
|
|
(***** Hoare provability *****************************************************)
|
|
|
|
Reserved Notation "|- [| x |] y [| z |]" (at level 30).
|
|
|
|
Inductive hoare_provability : Assert -> Instr -> Assert -> Prop :=
|
|
| H_skip: forall pre, hoare_provability pre skip pre
|
|
| H_abort: forall pre, forall post, hoare_provability pre abort post
|
|
| H_assign: forall post, forall (x: Var), forall (e: Expr),
|
|
(|- [| post [[ x <- expr e ]] |] (assign x e) [| post |]) % assert
|
|
| H_conseq:
|
|
forall pre, forall post,
|
|
forall pre', forall post',
|
|
forall s,
|
|
(|- [| pre' |] s [| post' |]) % assert ->
|
|
(assertImplLogical pre pre') ->
|
|
(assertImplLogical post' post) ->
|
|
(|- [| pre |] s [| post |]) % assert
|
|
| H_seq:
|
|
forall pre, forall mid, forall post, forall s1, forall s2,
|
|
(|- [|pre|] s1 [|mid|]) % assert ->
|
|
(|- [|mid|] s2 [|post|]) % assert ->
|
|
(|- [|pre|] (seq s1 s2) [|post|]) % assert
|
|
| H_if:
|
|
forall pre, forall post, forall expr, forall sIf, forall sElse,
|
|
(|- [| pre /\ (assertOfExpr expr) |] sIf [| post |]) % assert ->
|
|
(|- [| pre /\ ~(assertOfExpr expr) |] sElse [| post |]) % assert ->
|
|
(|- [| pre |] (ifelse expr sIf sElse) [| post |]) % assert
|
|
| H_while:
|
|
forall inv assert expr sBody,
|
|
(|- [| inv /\ (assertOfExpr expr) |] sBody [| inv |]) % assert ->
|
|
(|- [| inv |] (while assert expr sBody)
|
|
[| inv /\ ~ (assertOfExpr expr) |]) % assert
|
|
where "|- [| pre |] instr [| post |]" :=
|
|
(hoare_provability pre instr post) : assert.
|
|
|
|
(***** Hoare: provability implies consequence ********************************)
|
|
|
|
Definition conseq_or_bottom (y: Assert) (m: MemCpo) :=
|
|
match m with
|
|
| CpoError _ => True
|
|
| CpoElem _ m0 => y m0
|
|
end.
|
|
|
|
Definition hoare_consequence (pre: Assert) (instr: Instr) (post: Assert) :=
|
|
forall mem: Mem,
|
|
(pre mem) -> (conseq_or_bottom post (interp instr (MemElem mem))).
|
|
|
|
Notation "|= [| pre |] instr [| post |]" :=
|
|
(hoare_consequence pre instr post) (at level 30): assert.
|
|
|
|
Lemma weaken_in_conseq:
|
|
forall a1, forall a2, forall m,
|
|
assertImplLogical a1 a2 -> conseq_or_bottom a1 m ->
|
|
conseq_or_bottom a2 m.
|
|
Proof.
|
|
intros a1 a2 m impl conseq. destruct m.
|
|
- apply conseq.
|
|
- simpl. unfold assertImplLogical in impl. apply (impl m). apply conseq.
|
|
Qed.
|
|
|
|
Lemma interp_of_error (s: Instr):
|
|
interp s (MemError) = MemError.
|
|
Proof.
|
|
unfold MemError. destruct s; cbv; trivial.
|
|
Qed.
|
|
|
|
Lemma conseq_or_bottom_is_conseq (y: Assert) (m: Mem) :
|
|
conseq_or_bottom y (MemElem m) -> y m.
|
|
Proof.
|
|
intros src; unfold conseq_or_bottom; simpl; trivial.
|
|
Qed.
|
|
|
|
Lemma error_leads_to_no_success s:
|
|
forall m, interp s MemError <> MemElem m.
|
|
Proof.
|
|
intros mem. unfold interp; destruct s; simpl ;
|
|
unfold MemElem; unfold MemError; congruence.
|
|
Qed.
|
|
|
|
Lemma expr_neg_consistency (expr: Expr):
|
|
forall mem, expr_neg expr mem <> 0%Z -> (~ assertOfExpr expr)%assert mem.
|
|
Proof.
|
|
intros mem. intros src.
|
|
unfold assertNot. unfold assertOfExpr. destruct (expr mem) eqn:exprRel.
|
|
+ congruence.
|
|
+ elimtype False.
|
|
unfold expr_neg in src; rewrite exprRel in src. apply src.
|
|
congruence.
|
|
+ elimtype False.
|
|
unfold expr_neg in src; rewrite exprRel in src. apply src.
|
|
congruence.
|
|
Qed.
|
|
|
|
Lemma Sn_noerror_n_noerror (n: nat) (s: Instr) (sMem: Mem) (m: Mem):
|
|
interp (nth_iterate s (S n)) (MemElem sMem) = MemElem m
|
|
-> exists m0, interp (nth_iterate s n) (MemElem sMem) = MemElem m0
|
|
/\ interp s (MemElem m0) = MemElem m.
|
|
Proof.
|
|
intro HSn.
|
|
destruct (interp (nth_iterate s n) (MemElem sMem)) eqn:nRel.
|
|
- rewrite (unfold_one_iter s sMem n) in HSn.
|
|
rewrite nRel in HSn. apply error_leads_to_no_success in HSn.
|
|
elimtype False. apply HSn.
|
|
- exists m0; unfold MemElem. split.
|
|
* trivial.
|
|
* rewrite <- nRel; simpl. apply HSn.
|
|
Qed.
|
|
|
|
|
|
Lemma greater_n_noerror (n1 n2: nat) (s: Instr) (sMem: Mem) (m: Mem):
|
|
n1 < n2
|
|
-> interp (nth_iterate s n2) (MemElem sMem) = MemElem m
|
|
-> exists m0, interp (nth_iterate s n1) (MemElem sMem) = MemElem m0.
|
|
Proof.
|
|
intros nRel eventuallySound.
|
|
assert (forall nDecr, nDecr <= n2 - n1 ->
|
|
exists m0,
|
|
interp (nth_iterate s (n2 - nDecr)) (MemElem sMem) = MemElem m0).
|
|
* intros mDecr mDecrRel. induction mDecr.
|
|
+ exists m.
|
|
assert (n2 = n2 - 0).
|
|
{ unfold Nat.sub. destruct n2; trivial. }
|
|
{ rewrite <- H. assumption. }
|
|
+ assert (mDecr <= n2 - n1).
|
|
{ omega. }
|
|
{ elim (IHmDecr H). intros memNext memNextRel.
|
|
elim (Sn_noerror_n_noerror (n2 - (S mDecr)) s sMem memNext).
|
|
intros memNow [memNowRel memNowInterp].
|
|
exists memNow. apply memNowRel.
|
|
assert (S (n2 - S mDecr) = n2 - mDecr). omega.
|
|
rewrite H0. apply memNextRel.
|
|
}
|
|
* assert (n2 - n1 <= n2 - n1). omega. elim (H (n2 - n1) H0).
|
|
intros memRes memResRel. exists memRes.
|
|
assert (n2 - (n2 - n1) = n1). omega. rewrite H1 in memResRel.
|
|
assumption.
|
|
Qed.
|
|
|
|
Lemma unwrap_CpoElem (T: Type) :
|
|
forall m1 m2, CpoElem T m1 = CpoElem T m2 -> m1 = m2.
|
|
Proof.
|
|
intros m1 m2 cpoEq. congruence.
|
|
Qed.
|
|
|
|
Theorem hoare_provability_implies_consequence :
|
|
forall (pre: Assert), forall (s: Instr), forall (post: Assert),
|
|
( |- [| pre |] s [| post |] ) % assert
|
|
-> ( |= [| pre |] s [| post |] ) % assert.
|
|
Proof.
|
|
intros pre instr post. intros deduction.
|
|
induction deduction; intros mem preInMem.
|
|
- exact preInMem.
|
|
- simpl; trivial.
|
|
- exact preInMem.
|
|
- apply (weaken_in_conseq post' post (interp s (MemElem mem)) H0).
|
|
apply IHdeduction. apply H. exact preInMem.
|
|
- simpl; destruct (interp s1 (MemElem mem)) eqn:mRel.
|
|
* fold MemError. rewrite (interp_of_error s2); simpl; trivial.
|
|
* apply (IHdeduction2 m). unfold hoare_consequence in IHdeduction1.
|
|
specialize IHdeduction1 with mem as IH1_mem.
|
|
rewrite mRel in IH1_mem. apply IH1_mem. assumption.
|
|
- simpl; destruct (expr mem =? 0)%Z eqn:branchEqn.
|
|
* apply (IHdeduction2 mem). unfold assertOfExpr.
|
|
unfold assertAnd. split.
|
|
+ assumption.
|
|
+ unfold assertNot. rewrite <- Z.eqb_eq. congruence.
|
|
* apply (IHdeduction1 mem). unfold assertOfExpr.
|
|
unfold assertAnd. split.
|
|
+ assumption.
|
|
+ rewrite <- Z.eqb_eq. congruence.
|
|
- unfold conseq_or_bottom.
|
|
destruct (interp (while assert expr sBody) (MemElem mem)) eqn:interpRel.
|
|
* trivial.
|
|
* elim (certain_termination assert sBody expr (MemElem mem)).
|
|
intros n [lastIter [notLastIter isWhile] ].
|
|
rewrite isWhile in interpRel.
|
|
destruct n.
|
|
{
|
|
simpl in lastIter. simpl in interpRel; unfold MemElem in interpRel.
|
|
unfold assertAnd. apply (unwrap_CpoElem Mem) in interpRel. split.
|
|
{ rewrite interpRel in preInMem; assumption. }
|
|
{ apply expr_neg_consistency; rewrite <- interpRel; assumption. }
|
|
}
|
|
unfold assertAnd; split.
|
|
+ apply conseq_or_bottom_is_conseq. unfold MemElem.
|
|
rewrite <- interpRel.
|
|
assert (forall n1, n1 <= (S n) ->
|
|
conseq_or_bottom inv
|
|
(interp (nth_iterate sBody n1) (MemElem mem))).
|
|
{ induction n1.
|
|
{ intros obvious. simpl. assumption. }
|
|
{ intros order; simpl.
|
|
unfold hoare_consequence in IHdeduction.
|
|
assert (n1 < S n) as nOrder. omega.
|
|
elim (greater_n_noerror n1 (S n) sBody mem m nOrder interpRel).
|
|
intros memN relMemN.
|
|
specialize (IHdeduction memN) as IHmem.
|
|
rewrite relMemN.
|
|
apply IHmem.
|
|
unfold assertAnd; split.
|
|
{ rewrite relMemN in IHn1; unfold MemElem in IHn1.
|
|
apply IHn1. omega.
|
|
}
|
|
{ unfold assertOfExpr.
|
|
specialize (notLastIter n1).
|
|
rewrite relMemN in notLastIter.
|
|
unfold satisfies_expr in notLastIter; simpl in notLastIter.
|
|
apply notLastIter. assumption.
|
|
}
|
|
}
|
|
}
|
|
{
|
|
apply H. omega.
|
|
}
|
|
+ unfold assertNot; unfold assertOfExpr. rewrite interpRel in lastIter.
|
|
unfold satisfies_expr in lastIter.
|
|
unfold expr_neg in lastIter.
|
|
destruct (expr m); simpl; congruence.
|
|
+ rewrite interpRel; unfold MemError; congruence.
|
|
Qed.
|
|
|
|
(***** Syntactic assertion interpretation ************************************)
|
|
|
|
Fixpoint aInterp (src: SynAssert): Assert :=
|
|
fun (mem: Mem) => match src with
|
|
| ATop => True
|
|
| ABot => False
|
|
| ANeg x => ~ (aInterp x mem)
|
|
| AAnd x y => (aInterp x mem) /\ (aInterp y mem)
|
|
| AOr x y => (aInterp x mem) \/ (aInterp y mem)
|
|
| AImplies x y => (~ (aInterp x mem)) \/ (aInterp y mem)
|
|
| AExpr exp => exp mem <> 0%Z
|
|
| AForall v x => forall (z: Z), aInterp x (mem [v <- z])
|
|
| AExists v x => exists (z: Z), aInterp x (mem [v <- z])
|
|
| ASubstZ v z x => aInterp x (mem [v <- z])
|
|
| ASubstE v e x => aInterp x (mem [v <- (e mem)])
|
|
end.
|
|
|
|
(***** Weakest precondition **************************************************)
|
|
|
|
Fixpoint wp (instr: Instr) (cond: Assert) : Assert := match instr with
|
|
| skip => cond
|
|
| abort => assertTop
|
|
| assign x expr => (cond [[ x <- expr expr ]])
|
|
| seq s1 s2 => wp s1 (wp s2 cond)
|
|
| ifelse guard sIf sElse =>
|
|
((assertOfExpr guard -> wp sIf cond)
|
|
/\ (~ (assertOfExpr guard) -> wp sElse cond)) % assert
|
|
| while assert guard body => assertBot
|
|
end.
|
|
|
|
Lemma assertImplElim {a b: Assert} :
|
|
forall (m: Mem), (assertImpl a b) m -> a m -> b m.
|
|
Proof.
|
|
intros mem impl pa.
|
|
unfold assertImpl in impl; unfold assertOr in impl.
|
|
destruct impl.
|
|
* elimtype False. unfold assertNot in H. apply (H pa).
|
|
* assumption.
|
|
Qed.
|
|
|
|
Lemma assertImplSelf (a: Assert) :
|
|
assertImplLogical a a.
|
|
Proof.
|
|
unfold assertImplLogical. intros mem x. assumption.
|
|
Qed.
|
|
|
|
Lemma preBottomIsCorrect {instr post}:
|
|
(|= [|assertBot|] instr [|post|]) % assert.
|
|
Proof.
|
|
unfold hoare_consequence. intros mem.
|
|
unfold assertBot.
|
|
intros F; exfalso; exact F.
|
|
Qed.
|
|
|
|
Lemma leftWeaken {instr post}:
|
|
forall pre,
|
|
(|- [|pre|] instr [|post|])%assert
|
|
-> (|- [|assertBot|] instr [|post|])%assert.
|
|
Proof.
|
|
intros pre orig.
|
|
apply (H_conseq
|
|
assertBot post
|
|
pre post).
|
|
- assumption.
|
|
- unfold assertImplLogical. intros mem.
|
|
unfold assertBot. intros F; exfalso; assumption.
|
|
- apply (assertImplSelf post).
|
|
Qed.
|
|
|
|
Lemma assertBotAndStuff {res}:
|
|
forall assert, assertImplLogical (assertBot /\ assert)%assert (res).
|
|
Proof.
|
|
intros assert. unfold assertImplLogical. unfold assertBot. unfold assertAnd.
|
|
intros mem [F _]. exfalso. assumption.
|
|
Qed.
|
|
|
|
Lemma preBottomIsProvable {instr post}:
|
|
(|- [|assertBot|] instr [|post|]) % assert.
|
|
Proof.
|
|
revert post.
|
|
induction instr; intros post.
|
|
* apply (leftWeaken post); apply (H_skip post).
|
|
* apply (H_abort assertBot post).
|
|
* apply (leftWeaken (post [[ v <- expr e]])%assert ).
|
|
apply (H_assign post v e).
|
|
* specialize IHinstr2 with post; specialize IHinstr1 with assertBot.
|
|
apply (H_seq assertBot assertBot post).
|
|
assumption. assumption.
|
|
* apply (H_if assertBot post e instr1 instr2).
|
|
- apply (H_conseq
|
|
(assertBot /\ assertOfExpr e)%assert post
|
|
assertBot post).
|
|
+ apply IHinstr1.
|
|
+ apply (assertBotAndStuff (assertOfExpr e)).
|
|
+ apply (assertImplSelf post).
|
|
- apply (H_conseq
|
|
(assertBot /\ ~ assertOfExpr e)%assert post
|
|
assertBot post).
|
|
+ apply IHinstr2.
|
|
+ apply (assertBotAndStuff (assertNot (assertOfExpr e))).
|
|
+ apply (assertImplSelf post).
|
|
* apply (H_conseq
|
|
assertBot post
|
|
assertBot (assertBot /\ ~ (assertOfExpr e))%assert).
|
|
- apply (H_while assertBot s e instr).
|
|
apply (H_conseq
|
|
(assertBot /\ assertOfExpr e)%assert assertBot
|
|
assertBot assertBot).
|
|
+ apply IHinstr.
|
|
+ apply (assertBotAndStuff (assertOfExpr e)).
|
|
+ apply assertImplSelf.
|
|
- apply assertImplSelf.
|
|
- apply assertBotAndStuff.
|
|
Qed.
|
|
|
|
Theorem wp_correctness_provable (instr: Instr) :
|
|
forall post,
|
|
( |- [| wp instr post |] instr [| post |] ) % assert.
|
|
Proof.
|
|
induction instr; intros post; simpl.
|
|
* apply (H_skip post).
|
|
* apply (H_abort assertTop post).
|
|
* apply (H_assign post v e).
|
|
* remember (wp instr2 post) as mid eqn:midRel.
|
|
remember (wp instr1 mid) as pre eqn:preRel.
|
|
specialize IHinstr2 with post.
|
|
specialize IHinstr1 with mid.
|
|
rewrite <- midRel in IHinstr2; rewrite <- preRel in IHinstr1.
|
|
apply (H_seq pre mid post instr1 instr2).
|
|
assumption. assumption.
|
|
* remember ((assertOfExpr e -> wp instr1 post)
|
|
/\ (~ assertOfExpr e -> wp instr2 post)) % assert
|
|
as pre eqn:preRel.
|
|
apply (H_if pre post e instr1 instr2).
|
|
- apply (H_conseq
|
|
(pre /\ assertOfExpr e)%assert post
|
|
(wp instr1 post) post instr1
|
|
(IHinstr1 post)).
|
|
+ rewrite preRel. unfold assertImplLogical.
|
|
intros mem. intros [ [disjunctIf disjunctElse] isIf].
|
|
apply (assertImplElim mem disjunctIf isIf).
|
|
+ apply (assertImplSelf post).
|
|
- apply (H_conseq
|
|
(pre /\ ~ assertOfExpr e)%assert post
|
|
(wp instr2 post) post instr2
|
|
(IHinstr2 post)).
|
|
+ rewrite preRel. unfold assertImplLogical.
|
|
intros mem. intros [ [disjunctIf disjunctElse] isElse].
|
|
apply (assertImplElim mem disjunctElse isElse).
|
|
+ apply (assertImplSelf post).
|
|
* apply preBottomIsProvable.
|
|
Qed.
|
|
|
|
Theorem wp_correctness (instr: Instr) :
|
|
forall post,
|
|
( |= [| wp instr post |] instr [| post |] ) % assert.
|
|
Proof.
|
|
intros post.
|
|
apply hoare_provability_implies_consequence.
|
|
apply wp_correctness_provable.
|
|
Qed.
|
|
|
|
(***** Assertions syntaxiques -- proprietes **********************************)
|
|
|
|
Fixpoint wps (instr: Instr) (asser: SynAssert) : SynAssert := match instr with
|
|
| skip => asser
|
|
| abort => ATop
|
|
| assign x expr => ASubstE x expr asser
|
|
| seq s1 s2 => wps s1 (wps s2 asser)
|
|
| ifelse guard sIf sElse =>
|
|
AAnd
|
|
(AImplies (AExpr guard) (wps sIf asser))
|
|
(AImplies (ANeg (AExpr guard)) (wps sElse asser))
|
|
| while assert guard body => ABot
|
|
end.
|
|
|
|
Lemma aInterpConsistent (instr: Instr):
|
|
forall post, aInterp (wps instr post) = wp instr (aInterp post).
|
|
Proof.
|
|
induction instr; intros post; simpl; trivial.
|
|
* (* sequence *)
|
|
rewrite <- (IHinstr2 post).
|
|
rewrite (IHinstr1 (wps instr2 post)).
|
|
congruence.
|
|
* (* if/else *)
|
|
rewrite <- (IHinstr2 post).
|
|
rewrite <- (IHinstr1 post).
|
|
unfold assertAnd; unfold assertImpl; unfold assertOfExpr; unfold assertOr;
|
|
unfold assertNot; simpl.
|
|
apply functional_extensionality; intros mem; simpl. congruence.
|
|
Qed.
|
|
|
|
Theorem wps_correctness (instr: Instr):
|
|
forall post,
|
|
( |= [| aInterp (wps instr post) |] instr [| aInterp post |] ) % assert.
|
|
Proof.
|
|
intro post.
|
|
rewrite (aInterpConsistent instr).
|
|
apply wp_correctness.
|
|
Qed.
|
|
|
|
(* vim: ts=2 sw=2
|
|
*)
|