Revert before introduction of option Assert
This mostly reverts commit c2c58119be
.
The theorems will be slightly different and should be way cleaner.
This commit is contained in:
parent
260ac05c6e
commit
cd467dc8b0
1 changed files with 34 additions and 90 deletions
116
wp.v
116
wp.v
|
@ -476,98 +476,42 @@ Proof.
|
||||||
intros F; exfalso; exact F.
|
intros F; exfalso; exact F.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Theorem wp_correctness (instr: Instr):
|
Theorem wp_correctness_provable (instr: Instr) :
|
||||||
forall post, ( |= [| wp instr post |] instr [| post |] ) % assert.
|
forall post, ( |- [| wp instr post |] instr [| post |] ) % assert.
|
||||||
Proof.
|
Proof.
|
||||||
induction instr; intros post.
|
induction instr; intros post; simpl.
|
||||||
* apply hoare_provability_implies_consequence.
|
* apply (H_skip post).
|
||||||
apply (H_skip post).
|
* apply (H_abort assertTop post).
|
||||||
* apply hoare_provability_implies_consequence.
|
* apply (H_assign post v e).
|
||||||
apply (H_abort assertTop post).
|
* remember (wp instr2 post) as mid eqn:midRel.
|
||||||
* apply hoare_provability_implies_consequence. apply (H_assign post v e).
|
|
||||||
* apply hoare_provability_implies_consequence.
|
|
||||||
remember (wp instr2 (Some post)) as mid eqn:midRel.
|
|
||||||
remember (wp instr1 mid) as pre eqn:preRel.
|
remember (wp instr1 mid) as pre eqn:preRel.
|
||||||
simpl; rewrite <- midRel; rewrite <- preRel.
|
specialize IHinstr2 with post.
|
||||||
specialize IHinstr2 with (Some post0) as IHpost.
|
specialize IHinstr1 with mid.
|
||||||
specialize IHinstr1 with mid as IHmid.
|
rewrite <- midRel in IHinstr2.
|
||||||
rewrite <- midRel in IHpost; rewrite <- preRel in IHmid.
|
rewrite <- preRel in IHinstr1.
|
||||||
destruct mid as [mid0 | ] eqn:mid0Rel.
|
apply (H_seq pre mid post instr1 instr2).
|
||||||
destruct pre as [pre0 | ] eqn: pre0Rel.
|
assumption. assumption.
|
||||||
apply (H_seq pre0 mid0 post0).
|
* remember ((assertOfExpr e -> wp instr1 post)
|
||||||
apply IHmid. apply IHpost.
|
/\ (~ assertOfExpr e -> wp instr2 post)) % assert
|
||||||
+ unfold whatever_or_none; trivial.
|
as pre eqn:preRel.
|
||||||
+ destruct pre.
|
apply (H_if pre post e instr1 instr2).
|
||||||
- unfold provable_or_none in IHmid; unfold whatever_or_none in IHmid.
|
|
||||||
exfalso. apply IHmid.
|
|
||||||
- unfold whatever_or_none; trivial.
|
|
||||||
* apply hoare_provability_implies_consequence.
|
|
||||||
specialize IHinstr1 with (Some post0);
|
|
||||||
specialize IHinstr2 with (Some post0).
|
|
||||||
destruct (wp instr1 (Some post0)) as [preIf | ] eqn:preIfRel;
|
|
||||||
destruct (wp instr2 (Some post0)) as [preElse | ] eqn:preElseRel.
|
|
||||||
remember ((assertOfExpr e -> preIf)
|
|
||||||
/\ (~ assertOfExpr e -> preElse)) % assert
|
|
||||||
as pre0 eqn:pre0Rel.
|
|
||||||
assert (wp (ifelse e instr1 instr2) (Some post0) = (Some pre0)).
|
|
||||||
{
|
|
||||||
rewrite pre0Rel; simpl; rewrite preIfRel; rewrite preElseRel; congruence.
|
|
||||||
}
|
|
||||||
{
|
|
||||||
rewrite H.
|
|
||||||
apply (H_if pre0 post0 e instr1 instr2).
|
|
||||||
- apply (H_conseq
|
- apply (H_conseq
|
||||||
(pre0 /\ assertOfExpr e)%assert post0
|
(pre /\ assertOfExpr e)%assert post
|
||||||
preIf post0 instr1
|
(wp instr1 post) post instr1
|
||||||
IHinstr1).
|
(IHinstr1 post)).
|
||||||
+ rewrite pre0Rel. unfold assertImplLogical.
|
+ rewrite preRel. unfold assertImplLogical.
|
||||||
intros mem [ [disjunctIf disjunctElse] isIf].
|
intros mem. intros [ [disjunctIf disjunctElse] isIf].
|
||||||
apply (assertImplElim mem disjunctIf isIf).
|
apply (assertImplElim mem disjunctIf isIf).
|
||||||
+ apply (assertImplSelf post0).
|
+ apply (assertImplSelf post).
|
||||||
- apply (H_conseq
|
- apply (H_conseq
|
||||||
(pre0 /\ ~ assertOfExpr e)%assert post0
|
(pre /\ ~ assertOfExpr e)%assert post
|
||||||
preElse post0 instr2
|
(wp instr2 post) post instr2
|
||||||
IHinstr2).
|
(IHinstr2 post)).
|
||||||
+ rewrite pre0Rel. unfold assertImplLogical.
|
+ rewrite preRel. unfold assertImplLogical.
|
||||||
intros mem [ [disjunctIf disjunctElse] isElse].
|
intros mem. intros [ [disjunctIf disjunctElse] isElse].
|
||||||
apply (assertImplElim mem disjunctElse isElse).
|
apply (assertImplElim mem disjunctElse isElse).
|
||||||
+ apply (assertImplSelf post0).
|
+ apply (assertImplSelf post).
|
||||||
}
|
*
|
||||||
|
|
||||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
|
||||||
rewrite preIfRel; trivial.
|
|
||||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
|
||||||
rewrite preIfRel; trivial.
|
|
||||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
|
||||||
rewrite preIfRel; trivial.
|
|
||||||
* unfold wp. apply preBottomIsCorrect.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Lemma provable_opt_implies_provable {pre instr post} :
|
|
||||||
(|-opt [|Some pre|] instr [|Some post|])%assert
|
|
||||||
-> (|- [|pre|] instr [|post|])%assert.
|
|
||||||
Proof.
|
|
||||||
intros prf.
|
|
||||||
unfold provable_or_none in prf; unfold whatever_or_none in prf. assumption.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
Theorem wp_correctness (instr: Instr) :
|
|
||||||
forall post, ( |=opt [| wp instr post |] instr [| post |] ) % assert.
|
|
||||||
Proof.
|
|
||||||
intros post.
|
|
||||||
destruct post as [post0 | ] eqn:post0Rel.
|
|
||||||
remember (wp instr (Some post0)) as pre eqn:preRel.
|
|
||||||
destruct pre as [ pre0 | ] eqn:pre0Rel.
|
|
||||||
- unfold consequence_or_none; unfold whatever_or_none.
|
|
||||||
apply hoare_provability_implies_consequence.
|
|
||||||
apply provable_opt_implies_provable.
|
|
||||||
rewrite preRel.
|
|
||||||
apply wp_correctness_provable.
|
|
||||||
- unfold consequence_or_none; unfold whatever_or_none; trivial.
|
|
||||||
- unfold wp.
|
|
||||||
destruct instr; unfold consequence_or_none; unfold
|
|
||||||
whatever_or_none; trivial.
|
|
||||||
Qed.
|
|
||||||
|
|
||||||
(* vim: ts=2 sw=2
|
(* vim: ts=2 sw=2
|
||||||
*)
|
*)
|
||||||
|
|
Loading…
Reference in a new issue