242 lines
6.7 KiB
Python
242 lines
6.7 KiB
Python
import csv
|
|
import itertools
|
|
from dataclasses import dataclass
|
|
import logging
|
|
import subprocess
|
|
import typing as t
|
|
from bisect import bisect_left
|
|
import enum
|
|
from pathlib import Path
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CatGram(enum.Enum):
|
|
NOM = "NOM"
|
|
VERBE = "VER"
|
|
ADJECTIF = "ADJ"
|
|
ADVERBE = "ADV"
|
|
AUXILIAIRE = "AUX"
|
|
ARTICLE = "ART"
|
|
CONJONCTION = "CON"
|
|
LIAISON = "LIA"
|
|
PREPOSITION = "PRE"
|
|
PRONOM = "PRO"
|
|
ONOMATOPEE = "ONO"
|
|
|
|
@classmethod
|
|
def parse(cls, val: str) -> "CatGram":
|
|
"""Parses a 'catgram' entry"""
|
|
base = val.split(":", maxsplit=1)[0]
|
|
return cls(base)
|
|
|
|
def __lt__(self, oth):
|
|
return self.value < oth.value
|
|
|
|
|
|
def match_enum_or_all(val, enum_cls) -> list:
|
|
"""The value of the enum corresponding if any; else, all terms of the enum"""
|
|
if val in enum_cls:
|
|
return [enum_cls(val)]
|
|
return list(enum_cls)
|
|
|
|
|
|
class Genre(enum.Enum):
|
|
MASC = "m"
|
|
FEM = "f"
|
|
|
|
|
|
class Nombre(enum.Enum):
|
|
SING = "s"
|
|
PLUR = "p"
|
|
|
|
|
|
class Temps(enum.Enum):
|
|
INFINITIF = "inf"
|
|
PRESENT = "ind:pre"
|
|
FUTUR = "ind:fut"
|
|
IMPARFAIT = "ind:imp"
|
|
|
|
|
|
class Personne(enum.Enum):
|
|
S1 = "1s"
|
|
S2 = "2s"
|
|
S3 = "3s"
|
|
P1 = "1p"
|
|
P2 = "2p"
|
|
P3 = "3p"
|
|
|
|
|
|
@dataclass
|
|
class _Mot:
|
|
"""Canonical form of a word"""
|
|
|
|
mot: str
|
|
cat_gram: CatGram
|
|
freq: float # occurrences of the canonical form by million words
|
|
|
|
|
|
class Mot(_Mot):
|
|
class Variant:
|
|
pass
|
|
|
|
_for_cat_gram: dict[CatGram, t.Type["Mot"]] = {}
|
|
_variants: dict
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self._variants = {}
|
|
|
|
def accord(self, variant: Variant) -> str:
|
|
return self._variants[variant]
|
|
|
|
@classmethod
|
|
def for_cat_gram(cls, cat_gram: CatGram) -> t.Type["Mot"]:
|
|
"""The class to use for a word of given CatGram"""
|
|
return cls._for_cat_gram.get(cat_gram, cls)
|
|
|
|
|
|
class Nom(Mot):
|
|
class Variant(t.NamedTuple):
|
|
genre: Genre
|
|
nombre: Nombre
|
|
|
|
|
|
class Verbe(Mot):
|
|
class Variant(t.NamedTuple):
|
|
temps: Temps
|
|
personne: t.Optional[Personne]
|
|
|
|
|
|
Mot._for_cat_gram = {
|
|
CatGram.NOM: Nom,
|
|
CatGram.VERBE: Verbe,
|
|
}
|
|
|
|
|
|
class Lexique:
|
|
LEXIQUE_DIR_PATH = Path(__file__).parent.parent / "data/raw/Lexique383"
|
|
LEXIQUE_PATH = LEXIQUE_DIR_PATH / "Lexique383.tsv"
|
|
|
|
PRESET_THRESHOLD_BY_CAT: dict[CatGram, int] = {
|
|
CatGram.NOM: 10000,
|
|
CatGram.VERBE: 10000,
|
|
CatGram.ADJECTIF: 10000,
|
|
CatGram.ADVERBE: 10000,
|
|
}
|
|
|
|
dataset: list[Mot]
|
|
|
|
def __init__(self, dataset):
|
|
self.dataset = dataset
|
|
|
|
@classmethod
|
|
def _ensure_uncompressed(cls):
|
|
"""Ensures the dataset is uncompressed"""
|
|
if cls.LEXIQUE_DIR_PATH.exists():
|
|
return
|
|
|
|
lexique_archive = cls.LEXIQUE_DIR_PATH.with_suffix(".tar.xz")
|
|
if not lexique_archive.exists():
|
|
logging.error("Missing compressed dataset at %s", lexique_archive)
|
|
raise Exception(f"Missing compressed dataset at {lexique_archive}")
|
|
|
|
logging.info("Uncompressing dataset")
|
|
subprocess.check_call(
|
|
[
|
|
"tar",
|
|
"-xJf",
|
|
lexique_archive.as_posix(),
|
|
"-C",
|
|
lexique_archive.parent.as_posix(),
|
|
]
|
|
)
|
|
|
|
if not cls.LEXIQUE_DIR_PATH.exists():
|
|
logging.error(
|
|
"Uncompressed dataset still missing at %s after extraction",
|
|
cls.LEXIQUE_DIR_PATH,
|
|
)
|
|
raise Exception(
|
|
f"Uncompressed dataset still missing at {cls.LEXIQUE_DIR_PATH} after extraction"
|
|
)
|
|
|
|
@classmethod
|
|
def parse(cls) -> "Lexique":
|
|
out = []
|
|
rows = []
|
|
with cls.LEXIQUE_PATH.open("r") as h:
|
|
reader = csv.DictReader(h, dialect="excel-tab")
|
|
for row in reader:
|
|
if not row["cgram"]:
|
|
continue
|
|
rows.append(row)
|
|
|
|
# First pass: generate canonical forms (lemmes)
|
|
for row in rows:
|
|
if row["lemme"] != row["ortho"]:
|
|
continue
|
|
cat_gram = CatGram.parse(row["cgram"])
|
|
out.append(
|
|
Mot.for_cat_gram(cat_gram)(
|
|
mot=row["ortho"],
|
|
cat_gram=cat_gram,
|
|
freq=float(row["freqlemlivres"]),
|
|
)
|
|
)
|
|
|
|
out.sort(key=lambda x: (x.mot, x.cat_gram)) # We need to bisect on this.
|
|
|
|
# Second pass: populate variants
|
|
for row in rows:
|
|
str_lemme = row["lemme"]
|
|
cat_gram = CatGram.parse(row['cgram'])
|
|
lemme_pos = bisect_left(out, (str_lemme, cat_gram), key=lambda x: (x.mot, x.cat_gram))
|
|
if lemme_pos > len(out) or out[lemme_pos].mot != str_lemme:
|
|
continue # Unknown word
|
|
lemme = out[lemme_pos]
|
|
|
|
if lemme.cat_gram == CatGram.NOM:
|
|
genres = match_enum_or_all(row["genre"], Genre)
|
|
nombres = match_enum_or_all(row["nombre"], Nombre)
|
|
for genre, nombre in itertools.product(genres, nombres):
|
|
variant = Nom.Variant(genre=genre, nombre=nombre)
|
|
lemme._variants[variant] = row["ortho"]
|
|
|
|
elif lemme.cat_gram == CatGram.VERBE:
|
|
infover = row["infover"].split(";")
|
|
for raw_ver in infover:
|
|
ver = raw_ver.split(":")
|
|
|
|
temps = None
|
|
personne = None
|
|
if ver[0] == "inf":
|
|
temps = Temps(ver[0])
|
|
elif ver[0] == "ind":
|
|
temps_select = ":".join(ver[0:2])
|
|
if temps_select not in Temps:
|
|
continue
|
|
temps = Temps(temps_select)
|
|
personne = Personne(ver[2])
|
|
else:
|
|
continue
|
|
|
|
variant = Verbe.Variant(temps=temps, personne=personne)
|
|
lemme._variants[variant] = row["ortho"]
|
|
|
|
return cls(out)
|
|
|
|
def most_common(
|
|
self, cat_gram: CatGram, threshold: t.Optional[int] = None
|
|
) -> list[Mot]:
|
|
if threshold is None:
|
|
try:
|
|
threshold = self.PRESET_THRESHOLD_BY_CAT[cat_gram]
|
|
except KeyError as exn:
|
|
raise ValueError(
|
|
f"No threshold preset for grammatical category {cat_gram}, "
|
|
"please provide a threshold manually"
|
|
) from exn
|
|
out = list(filter(lambda word: word.cat_gram == cat_gram, self.dataset))
|
|
out.sort(key=lambda word: word.freq, reverse=True)
|
|
return out[:threshold]
|