Compare commits

..

13 commits

11 changed files with 851 additions and 52 deletions

1
data/raw/.gitignore vendored
View file

@ -1 +1,2 @@
Lexique383
Morphalou3.1_formatTEI

Binary file not shown.

29
data/raw/README.md Normal file
View file

@ -0,0 +1,29 @@
# Versions réduites de jeux de données
Les fichiers dans ce dossier sont des versions réduites de jeux de données
tiers.
Veillez à respecter les licences respectives de ces ressources dans les usages
que vous en faites.
## Lexique
La base de données Lexique (http://www.lexique.org/) est le travail, entre
autres contributeurs et contributrices, de Boris New et Christophe Pallier,
sous licence CC BY-NC
Le fichier présent ici est une version tronquée de la v3.83. Il ne conserve que
la partie utile au présent logiciel. Le jeu de données entier est disponible
sur leur site.
## Morphalou
La base de données Morphalou
(https://www.ortolang.fr/market/lexicons/morphalou/v3.1) est le travail, entre
autres contributeurs et contributrices, de Sandrine Ollinger, Christophe
Benzitoun, Evelyne Jacquey, Ulrike Fleury, Etienne Petitjean et Marie
Tonnelier. Sa version 3.1 est distribuée sous licence LGPL-LR.
Le fichier présent ici est une version tronquée de la v3.1. Il ne conserve que
la partie utile au présent logiciel. Le jeu de données entier est disponible
sur leur site.

0
pwgen_fr/__init__.py Normal file
View file

22
pwgen_fr/entrypoints.py Normal file
View file

@ -0,0 +1,22 @@
import argparse
import typing as t
from . import generate
def pwgen_fr():
choices_map: dict[str, t.Callable[[], str]] = {
"phrase4": generate.gen_phrase4,
"phrase6": generate.gen_phrase6,
"rand4": lambda: generate.gen_rand(n=4),
"rand6": lambda: generate.gen_rand(n=4),
}
parser = argparse.ArgumentParser()
parser.add_argument(
"mode", choices=choices_map.keys(), help="Select the generation procedure used"
)
args = parser.parse_args()
print(choices_map[args.mode]())

View file

@ -1,37 +1,72 @@
import secrets
from . import lexique
from . import word_db
lex = lexique.Lexique.parse()
wdb = word_db.WordDb.autoload()
def gen_phrase4():
out = []
out.append(secrets.choice(lex.most_common(lexique.CatGram.ADJECTIF)))
out.append(secrets.choice(lex.most_common(lexique.CatGram.NOM)))
out.append(secrets.choice(lex.most_common(lexique.CatGram.VERBE)))
out.append(secrets.choice(lex.most_common(lexique.CatGram.NOM)))
return " ".join(map(lambda x: x.word, out))
def gen_phrase4() -> str:
"""Generates a sentence with four words, of structure Adjective Noun Verb Adverb"""
nombre = word_db.Nombre.pick()
temps = word_db.Temps.pick()
adj = secrets.choice(wdb.adjectifs)
nom = secrets.choice(wdb.noms)
verbe = secrets.choice(wdb.verbes)
adverbe = secrets.choice(wdb.adverbes)
return " ".join(
[
adj.accord(nom.genre_or_pick, nombre),
nom.accord(nombre),
verbe.accord(temps, nombre),
adverbe.accord(),
]
)
def gen_rand(n=4):
def gen_phrase6() -> str:
"""Generates a sentence with six words, of structure Adjective Noun Verb Adjective
Noun Adverb"""
nombres = [word_db.Nombre.pick() for _ in range(2)]
temps = word_db.Temps.pick()
adj0 = secrets.choice(wdb.adjectifs)
nom0 = secrets.choice(wdb.noms)
verbe = secrets.choice(wdb.verbes)
adj1 = secrets.choice(wdb.adjectifs)
nom1 = secrets.choice(wdb.noms)
adverbe = secrets.choice(wdb.adverbes)
return " ".join(
[
adj0.accord(nom0.genre_or_pick, nombres[0]),
nom0.accord(nombres[0]),
verbe.accord(temps, nombres[0]),
adj1.accord(nom1.genre_or_pick, nombres[1]),
nom1.accord(nombres[1]),
adverbe.accord(),
]
)
def gen_rand(n=4) -> str:
"""Generates a fully random sequence of n words, without grammatical consistency"""
out = []
for _ in range(n):
cat = secrets.choice(
(
lexique.CatGram.ADJECTIF,
lexique.CatGram.NOM,
lexique.CatGram.VERBE,
lexique.CatGram.ADVERBE,
)
)
out.append(secrets.choice(lex.most_common(cat)))
return " ".join(map(lambda x: x.word, out))
word_cat = secrets.choice(list(wdb.CATEGORY_TO_ATTR))
if word_cat == word_db.Nom:
nombre = word_db.Nombre.pick()
out.append(secrets.choice(wdb.noms).accord(nombre))
elif word_cat == word_db.Adjectif:
genre = word_db.Genre.pick()
nombre = word_db.Nombre.pick()
out.append(secrets.choice(wdb.adjectifs).accord(genre, nombre))
elif word_cat == word_db.Verbe:
temps = word_db.Temps.pick()
nombre = word_db.Nombre.pick()
out.append(secrets.choice(wdb.verbes).accord(temps, nombre))
elif word_cat == word_db.Adverbe:
out.append(secrets.choice(wdb.adverbes).accord())
def gen_nom(n=4):
out = []
for _ in range(n):
cat = lexique.CatGram.NOM
out.append(secrets.choice(lex.most_common(cat)))
return " ".join(map(lambda x: x.word, out))
return " ".join(out)

View file

@ -1,9 +1,13 @@
import csv
import itertools
from dataclasses import dataclass, field
import logging
import subprocess
import typing as t
from bisect import bisect_left
import enum
from pathlib import Path
from .word_db import Genre, Nombre, Temps, Nom, Adjectif, Verbe, Adverbe, WordDb
logger = logging.getLogger(__name__)
@ -27,13 +31,25 @@ class CatGram(enum.Enum):
base = val.split(":", maxsplit=1)[0]
return cls(base)
def __lt__(self, oth):
return self.value < oth.value
class Word(t.NamedTuple):
word: str
lemme: str # canonical form
def match_enum_or_all(val: str, enum_mapper, enum_cls) -> list:
"""The value of the enum corresponding if any; else, all terms of the enum"""
if val in enum_mapper:
return [enum_mapper[val]]
return list(enum_cls)
@dataclass
class Mot:
mot: str
lemme: str
cat_gram: CatGram
freq_lem: float # occurrences of the canonical form, in films, by million words
freq: float # occurrences of this exact form, in films, by million words
freq: float # occurrences of the canonical form by million words
variantes: dict[tuple, str] = field(default_factory=dict)
genre: t.Optional[Genre] = None
class Lexique:
@ -47,10 +63,38 @@ class Lexique:
CatGram.ADVERBE: 10000,
}
dataset: list[Word]
class Parsers:
"""Datatables to help parse the original data"""
def __init__(self, dataset):
genre: dict[str, Genre] = {
"m": Genre.MASC,
"f": Genre.FEM,
}
rev_genre: dict[t.Optional[Genre], str] = {
None: "",
Genre.MASC: "m",
Genre.FEM: "f",
}
nombre: dict[str, Nombre] = {
"s": Nombre.SING,
"p": Nombre.PLUR,
}
verbe_temps: dict[str, Temps] = {
"ind:pre": Temps.PRESENT,
"ind:fut": Temps.FUTUR,
"ind:imp": Temps.IMPARFAIT,
}
verbe_personne: dict[str, Nombre] = {
"3s": Nombre.SING,
"3p": Nombre.PLUR,
}
dataset: list[Mot]
lemfreq: dict[str, float]
def __init__(self, dataset, lemfreq):
self.dataset = dataset
self.lemfreq = lemfreq
@classmethod
def _ensure_uncompressed(cls):
@ -83,32 +127,117 @@ class Lexique:
f"Uncompressed dataset still missing at {cls.LEXIQUE_DIR_PATH} after extraction"
)
@classmethod
def _find_word_key(cls, mot: Mot):
return (mot.lemme, mot.cat_gram, cls.Parsers.rev_genre[mot.genre])
@classmethod
def _find_word(cls, dataset: list[Mot], row: dict) -> t.Optional[Mot]:
str_lemme = row["lemme"]
cat_gram = CatGram.parse(row["cgram"])
genre = row["genre"] if cat_gram == CatGram.NOM else ""
row_key = (
str_lemme,
cat_gram,
genre,
)
lemme_pos = bisect_left(
dataset,
row_key,
key=cls._find_word_key,
)
if lemme_pos >= len(dataset):
return None
out = dataset[lemme_pos]
if row_key != cls._find_word_key(out):
return None
return dataset[lemme_pos]
@classmethod
def parse(cls) -> "Lexique":
out = []
rows = []
lemfreq: dict[str, float] = {}
with cls.LEXIQUE_PATH.open("r") as h:
reader = csv.DictReader(h, dialect="excel-tab")
for row in reader:
if not row["cgram"]:
continue
try:
rows.append(row)
# First pass: generate canonical forms (lemmes)
for row in rows:
cat_gram = CatGram.parse(row["cgram"])
if (row["lemme"] != row["ortho"]) and not (
cat_gram == CatGram.NOM and row["genre"] == "f" and row["nombre"] == "s"
):
# Un nom singulier féminin est considéré comme forme canonique
continue
genre: t.Optional[Genre] = None
if cat_gram == CatGram.NOM:
genre = cls.Parsers.genre.get(row["genre"], None)
out.append(
Word(
word=row["ortho"],
Mot(
mot=row["ortho"],
lemme=row["lemme"],
cat_gram=CatGram.parse(row["cgram"]),
freq_lem=float(row["freqlemlivres"]),
freq=float(row["freqlivres"]),
cat_gram=cat_gram,
freq=float(row["freqlemlivres"]),
genre=genre,
)
)
except ValueError as exn:
print(row)
raise exn from exn
return cls(out)
out.sort(key=cls._find_word_key) # We need to bisect on this.
# Second pass: populate variants
for row in rows:
# Populate lemfreq
old_freq = lemfreq.get(row["ortho"], 0.0)
lemfreq[row["ortho"]] = max(
old_freq,
float(row["freqlemlivres"]),
float(row["freqlemfilms2"]),
)
lemme = cls._find_word(out, row)
if lemme is None:
continue
if lemme.cat_gram == CatGram.NOM:
nombres = match_enum_or_all(row["nombre"], cls.Parsers.nombre, Nombre)
for nombre in nombres:
lemme.variantes[(nombre,)] = row["ortho"]
elif lemme.cat_gram == CatGram.VERBE:
infover = row["infover"].split(";")
for raw_ver in infover:
ver = raw_ver.split(":")
temps = None
personne = None
temps_select = ":".join(ver[0:2])
if temps_select not in Temps:
continue
temps = Temps(temps_select)
personne = cls.Parsers.verbe_personne.get(ver[2], None)
if personne is None:
continue # we're not interested in all conj. persons
lemme.variantes[(temps, personne)] = row["ortho"]
elif lemme.cat_gram == CatGram.ADJECTIF:
genres = match_enum_or_all(row["genre"], cls.Parsers.genre, Genre)
nombres = match_enum_or_all(row["nombre"], cls.Parsers.nombre, Nombre)
for genre, nombre in itertools.product(genres, nombres):
lemme.variantes[(genre, nombre)] = row["ortho"]
# No need to match adverbs (invariant)
return cls(out, lemfreq)
def most_common(
self, cat_gram: CatGram, threshold: t.Optional[int] = None
) -> list[Word]:
) -> list[Mot]:
if threshold is None:
try:
threshold = self.PRESET_THRESHOLD_BY_CAT[cat_gram]
@ -120,3 +249,52 @@ class Lexique:
out = list(filter(lambda word: word.cat_gram == cat_gram, self.dataset))
out.sort(key=lambda word: word.freq, reverse=True)
return out[:threshold]
def word_db(self, thresholds: t.Optional[dict[CatGram, int]] = None) -> WordDb:
"""Convert to a WordDb"""
thresholds = thresholds or {}
noms = self.most_common(CatGram.NOM, thresholds.get(CatGram.NOM, None))
db_noms = [
Nom(
genre=t.cast(Genre, nom.genre), # not None for noms
sing=nom.variantes[(Nombre.SING,)],
plur=nom.variantes[(Nombre.PLUR,)],
)
for nom in noms
]
adjectifs = self.most_common(
CatGram.ADJECTIF, thresholds.get(CatGram.ADJECTIF, None)
)
db_adjectifs = [
Adjectif(
masc_sing=adj.variantes[(Genre.MASC, Nombre.SING)],
masc_plur=adj.variantes[(Genre.MASC, Nombre.PLUR)],
fem_sing=adj.variantes[(Genre.FEM, Nombre.SING)],
fem_plur=adj.variantes[(Genre.FEM, Nombre.PLUR)],
)
for adj in adjectifs
]
verbes = self.most_common(CatGram.VERBE, thresholds.get(CatGram.VERBE, None))
db_verbes = [
Verbe(
present_sing=verbe.variantes[(Temps.PRESENT, Nombre.SING)],
present_plur=verbe.variantes[(Temps.PRESENT, Nombre.PLUR)],
futur_sing=verbe.variantes[(Temps.FUTUR, Nombre.SING)],
futur_plur=verbe.variantes[(Temps.FUTUR, Nombre.PLUR)],
imparfait_sing=verbe.variantes[(Temps.IMPARFAIT, Nombre.SING)],
imparfait_plur=verbe.variantes[(Temps.IMPARFAIT, Nombre.PLUR)],
)
for verbe in verbes
]
adverbes = self.most_common(
CatGram.ADVERBE, thresholds.get(CatGram.ADVERBE, None)
)
db_adverbes = [Adverbe(adv=adv.mot) for adv in adverbes]
return WordDb(
noms=db_noms, adjectifs=db_adjectifs, verbes=db_verbes, adverbes=db_adverbes
)

256
pwgen_fr/morphalou.py Normal file
View file

@ -0,0 +1,256 @@
""" Reads the Morphalou dataset, in its TSV form """
import itertools
import logging
import subprocess
import typing as t
from pathlib import Path
from lxml import etree
from .word_db import Adjectif, Adverbe, Genre, Nom, Nombre, Temps, Verbe, WordDb
TSV_NS = {
"tsv": "http://www.tei-c.org/ns/1.0",
"xml": "http://www.w3.org/XML/1998/namespace",
}
logger = logging.getLogger(__name__)
class MorphalouSet:
MORPHALOU_DIR_PATH = (
Path(__file__).parent.parent / "data/raw/Morphalou3.1_formatTEI"
)
MORPHALOU_FILENAME_TEMPLATE = "{cat_name}_Morphalou3.1_TEI.xml"
CAT_MAPPING: dict[t.Type[t.NamedTuple], str] = {
Nom: "commonNoun",
Adjectif: "adjective",
Verbe: "verb",
Adverbe: "adverb",
}
word_db: WordDb
def __init__(self):
self.word_db = WordDb()
@classmethod
def _ensure_uncompressed(cls):
"""Ensures the dataset is uncompressed"""
if cls.MORPHALOU_DIR_PATH.exists():
return
lexique_archive = cls.MORPHALOU_DIR_PATH.with_suffix(".tar.xz")
if not lexique_archive.exists():
logger.error("Missing compressed dataset at %s", lexique_archive)
raise Exception(f"Missing compressed dataset at {lexique_archive}")
logger.info("Uncompressing dataset")
subprocess.check_call(
[
"tar",
"-xJf",
lexique_archive.as_posix(),
"-C",
lexique_archive.parent.as_posix(),
]
)
if not cls.MORPHALOU_DIR_PATH.exists():
logger.error(
"Uncompressed dataset still missing at %s after extraction",
cls.MORPHALOU_DIR_PATH,
)
raise Exception(
f"Uncompressed dataset still missing at {cls.MORPHALOU_DIR_PATH} after extraction"
)
def parse(self):
"""Parses the dataset"""
self.__class__._ensure_uncompressed()
for cat, cat_file in self.__class__.CAT_MAPPING.items():
word_db_elt = WordDb.CATEGORY_TO_ATTR[cat]
logging.info("Parsing %s...", word_db_elt)
setattr(
self.word_db,
word_db_elt,
getattr(self, f"_parse_{word_db_elt}")(
self.__class__.MORPHALOU_DIR_PATH
/ self.__class__.MORPHALOU_FILENAME_TEMPLATE.format(
cat_name=cat_file
)
),
)
def _tsv_elems(self, tsv_path: Path):
"""Opens a TSV file, and returns the <body> node, direct parent of all the
relevant nodes"""
with tsv_path.open("r") as h:
tree = etree.parse(h)
root = tree.getroot()
body = root.find("./tsv:text/tsv:body", TSV_NS)
return body
def _parse_noms(self, tsv_path: Path) -> list[Nom]:
"""Parse the nouns"""
root = self._tsv_elems(tsv_path)
out: list[Nom] = []
for entry in root.iterfind("./tsv:entry", TSV_NS):
try:
genre = self._genre(
entry.find(
"./tsv:form[@type='lemma']/tsv:gramGrp/tsv:gen", TSV_NS
).text
)
except AttributeError:
continue # some nouns don't have a gender defined, somehow -- ignore
forms = {}
for inflected in entry.iterfind("./tsv:form[@type='inflected']", TSV_NS):
orth = inflected.find("./tsv:orth", TSV_NS).text
nombres = self._nombre_set(
inflected.find("./tsv:gramGrp/tsv:number", TSV_NS).text
)
for form in nombres:
forms[form] = orth
try:
out.append(
Nom(
genre=genre,
sing=forms[Nombre.SING],
plur=forms[Nombre.PLUR],
)
)
except KeyError:
continue # cannot be inflected to all required forms: skip
return out
def _parse_adjectifs(self, tsv_path: Path) -> list[Adjectif]:
"""Parse the adjectives"""
root = self._tsv_elems(tsv_path)
out: list[Adjectif] = []
for entry in root.iterfind("./tsv:entry", TSV_NS):
forms = {}
for inflected in entry.iterfind("./tsv:form[@type='inflected']", TSV_NS):
orth = inflected.find("./tsv:orth", TSV_NS).text
gram_grp = inflected.find("./tsv:gramGrp", TSV_NS)
genres = self._genre_set(gram_grp.find("./tsv:gen", TSV_NS).text)
nombres = self._nombre_set(gram_grp.find("./tsv:number", TSV_NS).text)
for form in itertools.product(genres, nombres):
forms[form] = orth
try:
out.append(
Adjectif(
masc_sing=forms[Genre.MASC, Nombre.SING],
masc_plur=forms[Genre.MASC, Nombre.PLUR],
fem_sing=forms[Genre.FEM, Nombre.SING],
fem_plur=forms[Genre.FEM, Nombre.PLUR],
)
)
except KeyError:
continue # cannot be inflected to all required forms: skip
return out
def _parse_verbes(self, tsv_path: Path) -> list[Verbe]:
"""Parse the verbs"""
root = self._tsv_elems(tsv_path)
out: list[Verbe] = []
for entry in root.iterfind("./tsv:entry", TSV_NS):
forms = {}
for inflected in entry.iterfind("./tsv:form[@type='inflected']", TSV_NS):
gram_grp = inflected.find("./tsv:gramGrp", TSV_NS)
# Order of tests is important! If mood == 'participle', there is no
# 'person' defined.
if (
gram_grp.find("./tsv:mood", TSV_NS).text != "indicative"
or gram_grp.find("./tsv:per", TSV_NS).text != "thirdPerson"
):
continue # irrelevant for us
temps = self._tense(gram_grp.find("./tsv:tns", TSV_NS).text)
if temps is None:
continue # irrelevant for us
nombres = self._nombre_set(gram_grp.find("./tsv:number", TSV_NS).text)
orth = inflected.find("./tsv:orth", TSV_NS).text
for nombre in nombres:
forms[(temps, nombre)] = orth
try:
out.append(
Verbe(
present_sing=forms[Temps.PRESENT, Nombre.SING],
present_plur=forms[Temps.PRESENT, Nombre.PLUR],
futur_sing=forms[Temps.FUTUR, Nombre.SING],
futur_plur=forms[Temps.FUTUR, Nombre.PLUR],
imparfait_sing=forms[Temps.IMPARFAIT, Nombre.SING],
imparfait_plur=forms[Temps.IMPARFAIT, Nombre.PLUR],
)
)
except KeyError:
continue # cannot be inflected to all required forms: skip
return out
def _parse_adverbes(self, tsv_path: Path) -> list[Adverbe]:
"""Parse the adverbs"""
root = self._tsv_elems(tsv_path)
out: list[Adverbe] = []
for entry in root.iterfind("./tsv:entry", TSV_NS):
# We're only interested in the lemma form
orth = entry.find("./tsv:form[@type='lemma']/tsv:orth", TSV_NS)
assert orth is not None
adv = orth.text
out.append(Adverbe(adv=adv))
return out
@staticmethod
def _genre_set(genre: str) -> list[Genre]:
return {
"masculine": [Genre.MASC],
"feminine": [Genre.FEM],
"invariable": [Genre.MASC, Genre.FEM],
}[genre]
@staticmethod
def _genre(genre: str) -> Genre:
return {
"masculine": Genre.MASC,
"feminine": Genre.FEM,
"invariable": Genre.INV,
}[genre]
@staticmethod
def _nombre(nombre: str) -> Nombre:
return {
"singular": Nombre.SING,
"plural": Nombre.PLUR,
}[nombre]
@staticmethod
def _nombre_set(nombre: str) -> list[Nombre]:
return {
"singular": [Nombre.SING],
"plural": [Nombre.PLUR],
"invariable": [Nombre.SING, Nombre.PLUR],
}[nombre]
@staticmethod
def _tense(tense: str) -> t.Optional[Temps]:
return {
"present": Temps.PRESENT,
"imperfect": Temps.IMPARFAIT,
"future": Temps.FUTUR,
}.get(tense, None)

View file

@ -0,0 +1,74 @@
""" Generates a worddb based on Morphalou, but limits to frequent words based on
external sources (eg Lexique) """
import logging
import typing as t
from . import lexique, morphalou
from .word_db import Adjectif, Adverbe, Genre, Nom, Nombre, Temps, Verbe, WordDb
logger = logging.getLogger(__name__)
class MorphalouFreqSet:
morphalou_db: WordDb
lexique: lexique.Lexique
filtered_db: WordDb
def __init__(
self,
morphalou_db: t.Optional[WordDb] = None,
lexique: t.Optional[lexique.Lexique] = None,
):
if not morphalou_db:
morphalou_set = morphalou.MorphalouSet()
morphalou_set.parse()
self.morphalou_db = morphalou_set.word_db
else:
self.morphalou_db = morphalou_db
if not lexique:
self.lexique = lexique.Lexique.parse()
else:
self.lexique = lexique
self.filtered_db = self._filter_lexique()
def _filter_nom(self, nom: Nom) -> bool:
freq = max(
self.lexique.lemfreq.get(nom.sing, 0.0),
self.lexique.lemfreq.get(nom.plur, 0.0),
)
return freq > 0
def _filter_adjectif(self, adjectif: Adjectif) -> bool:
freq = max(
self.lexique.lemfreq.get(adjectif.masc_sing, 0.0),
self.lexique.lemfreq.get(adjectif.fem_sing, 0.0),
)
return freq > 0
def _filter_verbe(self, verbe: Verbe) -> bool:
freq = max(
self.lexique.lemfreq.get(verbe.present_sing, 0.0),
self.lexique.lemfreq.get(verbe.futur_sing, 0.0),
self.lexique.lemfreq.get(verbe.imparfait_sing, 0.0),
self.lexique.lemfreq.get(verbe.present_plur, 0.0),
self.lexique.lemfreq.get(verbe.futur_plur, 0.0),
self.lexique.lemfreq.get(verbe.imparfait_plur, 0.0),
)
return freq > 0
def _filter_adverbe(self, adverbe: Adverbe) -> bool:
if " " in adverbe.adv:
return False
freq = self.lexique.lemfreq.get(adverbe.adv, 0.0)
return freq > 0
def _filter_lexique(self) -> WordDb:
out = WordDb()
out.noms = list(filter(self._filter_nom, self.morphalou_db.noms))
out.adjectifs = list(filter(self._filter_adjectif, self.morphalou_db.adjectifs))
out.verbes = list(filter(self._filter_verbe, self.morphalou_db.verbes))
out.adverbes = list(filter(self._filter_adverbe, self.morphalou_db.adverbes))
return out

206
pwgen_fr/word_db.py Normal file
View file

@ -0,0 +1,206 @@
""" A pre-processed database of words, independant of their source """
import gzip
import json
import secrets
import typing as t
from enum import Enum
from pathlib import Path
class Genre(Enum):
MASC = "masculin"
FEM = "féminin"
INV = "invariable" # pour les noms uniquement
@classmethod
def pick(cls) -> "Genre":
"""random-pick (avoids inv)"""
return secrets.choice([cls.MASC, cls.FEM])
class Nombre(Enum):
SING = "singulier"
PLUR = "pluriel"
@classmethod
def pick(cls) -> "Nombre":
"""random-pick"""
return secrets.choice(list(cls))
class Temps(Enum):
PRESENT = "present"
FUTUR = "futur"
IMPARFAIT = "imparfait"
@classmethod
def pick(cls) -> "Temps":
"""random-pick"""
return secrets.choice(list(cls))
class Nom(t.NamedTuple):
"""Nom commun"""
genre: Genre
sing: str
plur: str
def __str__(self) -> str:
return f"{self.sing}"
def accord(self, nombre: Nombre) -> str:
"""Accorde en nombre"""
return getattr(self, nombre.name.lower())
@property
def genre_or_pick(self) -> Genre:
"""Genre of the noun, or random-pick if invariable"""
if self.genre == Genre.INV:
return Genre.pick()
return self.genre
@property
def serialized(self):
return {"genre": self.genre.name, "sing": self.sing, "plur": self.plur}
@classmethod
def unserialized(cls, kwargs):
genre = Genre[kwargs.pop("genre")]
return cls(**kwargs, genre=genre)
class Adjectif(t.NamedTuple):
masc_sing: str
masc_plur: str
fem_sing: str
fem_plur: str
def __str__(self) -> str:
return f"{self.masc_sing}/{self.fem_sing}"
def accord(self, genre: Genre, nombre: Nombre) -> str:
"""Accorde en genre et en nombre"""
return getattr(self, f"{genre.name.lower()}_{nombre.name.lower()}")
@property
def serialized(self):
return self._asdict()
@classmethod
def unserialized(cls, kwargs):
return cls(**kwargs)
class Verbe(t.NamedTuple):
present_sing: str
present_plur: str
futur_sing: str
futur_plur: str
imparfait_sing: str
imparfait_plur: str
def __str__(self) -> str:
return f"{self.present_sing}"
def accord(self, temps: Temps, nombre: Nombre) -> str:
"""Accorde en temps et en nombre (seule la 3è pers. est utilisée)"""
return getattr(self, f"{temps.name.lower()}_{nombre.name.lower()}")
@property
def serialized(self):
return self._asdict()
@classmethod
def unserialized(cls, kwargs):
return cls(**kwargs)
class Adverbe(t.NamedTuple):
"""Packed as named tuple for consistence"""
adv: str
def __str__(self) -> str:
return self.adv
def accord(self) -> str:
"""for consistence"""
return self.adv
@property
def serialized(self):
return self._asdict()
@classmethod
def unserialized(cls, kwargs):
return cls(**kwargs)
class WordDb:
"""Base de donnée de mots, sérialisable"""
SERIALIZED_GZ_LOCATION = Path(__file__).parent.parent / "morphalou.json.gz"
_serialize_data: dict[str, t.Type[t.NamedTuple]] = {
"noms": Nom,
"adjectifs": Adjectif,
"verbes": Verbe,
"adverbes": Adverbe,
}
CATEGORY_TO_ATTR: dict = {
Nom: "noms",
Adjectif: "adjectifs",
Verbe: "verbes",
Adverbe: "adverbes",
}
noms: list[Nom]
adjectifs: list[Adjectif]
verbes: list[Verbe]
adverbes: list[Adverbe]
def __init__(
self,
noms: t.Optional[list[Nom]] = None,
adjectifs: t.Optional[list[Adjectif]] = None,
verbes: t.Optional[list[Verbe]] = None,
adverbes: t.Optional[list[Adverbe]] = None,
):
self.noms = noms or []
self.adjectifs = adjectifs or []
self.verbes = verbes or []
self.adverbes = adverbes or []
def serialize(self) -> dict:
"""Serialize to plain dictionary (no classes)"""
return {
attr: [x.serialized for x in getattr(self, attr)]
for attr in self.__class__._serialize_data
}
def save(self, fd):
"""Serialize to this stream"""
json.dump(self.serialize(), fd)
@classmethod
@t.no_type_check # serialization is messy
def unserialize(cls, data: dict) -> "WordDb":
"""Reverses :serialize:"""
parsed = {}
for attr, attr_cls in cls._serialize_data.items():
parsed[attr] = list(map(attr_cls.unserialized, data[attr]))
return cls(**parsed)
@classmethod
def load(cls, fd) -> "WordDb":
"""Unserialize from this stream"""
return cls.unserialize(json.load(fd))
@classmethod
def autoload(cls) -> "WordDb":
"""Unserialize from default source"""
with gzip.open(cls.SERIALIZED_GZ_LOCATION) as h:
return cls.load(h)

View file

@ -25,9 +25,7 @@ setup(
install_requires=parse_requirements(),
entry_points={
"console_scripts": [
# (
# "proxmox-snapshot-review = proxmox_scripts.snapshots:review_snapshots",
# ),
("pwgen-fr = pwgen_fr.entrypoints:pwgen_fr",),
]
},
)