Compare commits
13 commits
Author | SHA1 | Date | |
---|---|---|---|
64a3a30ddc | |||
4f152d45f2 | |||
a872ecb0f9 | |||
e8379656e1 | |||
3c10d987e6 | |||
62bb8076e9 | |||
695813d35f | |||
a9c3c90405 | |||
b086b9a08d | |||
f3df51ae26 | |||
cf455556be | |||
ff4a71d1a7 | |||
874329c982 |
11 changed files with 851 additions and 52 deletions
1
data/raw/.gitignore
vendored
1
data/raw/.gitignore
vendored
|
@ -1 +1,2 @@
|
|||
Lexique383
|
||||
Morphalou3.1_formatTEI
|
||||
|
|
BIN
data/raw/Morphalou3.1_formatTEI.tar.xz
Normal file
BIN
data/raw/Morphalou3.1_formatTEI.tar.xz
Normal file
Binary file not shown.
29
data/raw/README.md
Normal file
29
data/raw/README.md
Normal file
|
@ -0,0 +1,29 @@
|
|||
# Versions réduites de jeux de données
|
||||
|
||||
Les fichiers dans ce dossier sont des versions réduites de jeux de données
|
||||
tiers.
|
||||
|
||||
Veillez à respecter les licences respectives de ces ressources dans les usages
|
||||
que vous en faites.
|
||||
|
||||
## Lexique
|
||||
|
||||
La base de données Lexique (http://www.lexique.org/) est le travail, entre
|
||||
autres contributeurs et contributrices, de Boris New et Christophe Pallier,
|
||||
sous licence CC BY-NC
|
||||
|
||||
Le fichier présent ici est une version tronquée de la v3.83. Il ne conserve que
|
||||
la partie utile au présent logiciel. Le jeu de données entier est disponible
|
||||
sur leur site.
|
||||
|
||||
## Morphalou
|
||||
|
||||
La base de données Morphalou
|
||||
(https://www.ortolang.fr/market/lexicons/morphalou/v3.1) est le travail, entre
|
||||
autres contributeurs et contributrices, de Sandrine Ollinger, Christophe
|
||||
Benzitoun, Evelyne Jacquey, Ulrike Fleury, Etienne Petitjean et Marie
|
||||
Tonnelier. Sa version 3.1 est distribuée sous licence LGPL-LR.
|
||||
|
||||
Le fichier présent ici est une version tronquée de la v3.1. Il ne conserve que
|
||||
la partie utile au présent logiciel. Le jeu de données entier est disponible
|
||||
sur leur site.
|
0
pwgen_fr/__init__.py
Normal file
0
pwgen_fr/__init__.py
Normal file
22
pwgen_fr/entrypoints.py
Normal file
22
pwgen_fr/entrypoints.py
Normal file
|
@ -0,0 +1,22 @@
|
|||
import argparse
|
||||
import typing as t
|
||||
|
||||
from . import generate
|
||||
|
||||
|
||||
def pwgen_fr():
|
||||
choices_map: dict[str, t.Callable[[], str]] = {
|
||||
"phrase4": generate.gen_phrase4,
|
||||
"phrase6": generate.gen_phrase6,
|
||||
"rand4": lambda: generate.gen_rand(n=4),
|
||||
"rand6": lambda: generate.gen_rand(n=4),
|
||||
}
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"mode", choices=choices_map.keys(), help="Select the generation procedure used"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
print(choices_map[args.mode]())
|
|
@ -1,37 +1,72 @@
|
|||
import secrets
|
||||
|
||||
from . import lexique
|
||||
from . import word_db
|
||||
|
||||
lex = lexique.Lexique.parse()
|
||||
wdb = word_db.WordDb.autoload()
|
||||
|
||||
|
||||
def gen_phrase4():
|
||||
out = []
|
||||
out.append(secrets.choice(lex.most_common(lexique.CatGram.ADJECTIF)))
|
||||
out.append(secrets.choice(lex.most_common(lexique.CatGram.NOM)))
|
||||
out.append(secrets.choice(lex.most_common(lexique.CatGram.VERBE)))
|
||||
out.append(secrets.choice(lex.most_common(lexique.CatGram.NOM)))
|
||||
return " ".join(map(lambda x: x.word, out))
|
||||
def gen_phrase4() -> str:
|
||||
"""Generates a sentence with four words, of structure Adjective Noun Verb Adverb"""
|
||||
nombre = word_db.Nombre.pick()
|
||||
temps = word_db.Temps.pick()
|
||||
|
||||
adj = secrets.choice(wdb.adjectifs)
|
||||
nom = secrets.choice(wdb.noms)
|
||||
verbe = secrets.choice(wdb.verbes)
|
||||
adverbe = secrets.choice(wdb.adverbes)
|
||||
|
||||
return " ".join(
|
||||
[
|
||||
adj.accord(nom.genre_or_pick, nombre),
|
||||
nom.accord(nombre),
|
||||
verbe.accord(temps, nombre),
|
||||
adverbe.accord(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def gen_rand(n=4):
|
||||
def gen_phrase6() -> str:
|
||||
"""Generates a sentence with six words, of structure Adjective Noun Verb Adjective
|
||||
Noun Adverb"""
|
||||
nombres = [word_db.Nombre.pick() for _ in range(2)]
|
||||
temps = word_db.Temps.pick()
|
||||
|
||||
adj0 = secrets.choice(wdb.adjectifs)
|
||||
nom0 = secrets.choice(wdb.noms)
|
||||
verbe = secrets.choice(wdb.verbes)
|
||||
adj1 = secrets.choice(wdb.adjectifs)
|
||||
nom1 = secrets.choice(wdb.noms)
|
||||
adverbe = secrets.choice(wdb.adverbes)
|
||||
|
||||
return " ".join(
|
||||
[
|
||||
adj0.accord(nom0.genre_or_pick, nombres[0]),
|
||||
nom0.accord(nombres[0]),
|
||||
verbe.accord(temps, nombres[0]),
|
||||
adj1.accord(nom1.genre_or_pick, nombres[1]),
|
||||
nom1.accord(nombres[1]),
|
||||
adverbe.accord(),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def gen_rand(n=4) -> str:
|
||||
"""Generates a fully random sequence of n words, without grammatical consistency"""
|
||||
out = []
|
||||
for _ in range(n):
|
||||
cat = secrets.choice(
|
||||
(
|
||||
lexique.CatGram.ADJECTIF,
|
||||
lexique.CatGram.NOM,
|
||||
lexique.CatGram.VERBE,
|
||||
lexique.CatGram.ADVERBE,
|
||||
)
|
||||
)
|
||||
out.append(secrets.choice(lex.most_common(cat)))
|
||||
return " ".join(map(lambda x: x.word, out))
|
||||
word_cat = secrets.choice(list(wdb.CATEGORY_TO_ATTR))
|
||||
if word_cat == word_db.Nom:
|
||||
nombre = word_db.Nombre.pick()
|
||||
out.append(secrets.choice(wdb.noms).accord(nombre))
|
||||
elif word_cat == word_db.Adjectif:
|
||||
genre = word_db.Genre.pick()
|
||||
nombre = word_db.Nombre.pick()
|
||||
out.append(secrets.choice(wdb.adjectifs).accord(genre, nombre))
|
||||
elif word_cat == word_db.Verbe:
|
||||
temps = word_db.Temps.pick()
|
||||
nombre = word_db.Nombre.pick()
|
||||
out.append(secrets.choice(wdb.verbes).accord(temps, nombre))
|
||||
elif word_cat == word_db.Adverbe:
|
||||
out.append(secrets.choice(wdb.adverbes).accord())
|
||||
|
||||
|
||||
def gen_nom(n=4):
|
||||
out = []
|
||||
for _ in range(n):
|
||||
cat = lexique.CatGram.NOM
|
||||
out.append(secrets.choice(lex.most_common(cat)))
|
||||
return " ".join(map(lambda x: x.word, out))
|
||||
return " ".join(out)
|
||||
|
|
|
@ -1,9 +1,13 @@
|
|||
import csv
|
||||
import itertools
|
||||
from dataclasses import dataclass, field
|
||||
import logging
|
||||
import subprocess
|
||||
import typing as t
|
||||
from bisect import bisect_left
|
||||
import enum
|
||||
from pathlib import Path
|
||||
from .word_db import Genre, Nombre, Temps, Nom, Adjectif, Verbe, Adverbe, WordDb
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -27,13 +31,25 @@ class CatGram(enum.Enum):
|
|||
base = val.split(":", maxsplit=1)[0]
|
||||
return cls(base)
|
||||
|
||||
def __lt__(self, oth):
|
||||
return self.value < oth.value
|
||||
|
||||
class Word(t.NamedTuple):
|
||||
word: str
|
||||
lemme: str # canonical form
|
||||
|
||||
def match_enum_or_all(val: str, enum_mapper, enum_cls) -> list:
|
||||
"""The value of the enum corresponding if any; else, all terms of the enum"""
|
||||
if val in enum_mapper:
|
||||
return [enum_mapper[val]]
|
||||
return list(enum_cls)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Mot:
|
||||
mot: str
|
||||
lemme: str
|
||||
cat_gram: CatGram
|
||||
freq_lem: float # occurrences of the canonical form, in films, by million words
|
||||
freq: float # occurrences of this exact form, in films, by million words
|
||||
freq: float # occurrences of the canonical form by million words
|
||||
variantes: dict[tuple, str] = field(default_factory=dict)
|
||||
genre: t.Optional[Genre] = None
|
||||
|
||||
|
||||
class Lexique:
|
||||
|
@ -47,10 +63,38 @@ class Lexique:
|
|||
CatGram.ADVERBE: 10000,
|
||||
}
|
||||
|
||||
dataset: list[Word]
|
||||
class Parsers:
|
||||
"""Datatables to help parse the original data"""
|
||||
|
||||
def __init__(self, dataset):
|
||||
genre: dict[str, Genre] = {
|
||||
"m": Genre.MASC,
|
||||
"f": Genre.FEM,
|
||||
}
|
||||
rev_genre: dict[t.Optional[Genre], str] = {
|
||||
None: "",
|
||||
Genre.MASC: "m",
|
||||
Genre.FEM: "f",
|
||||
}
|
||||
nombre: dict[str, Nombre] = {
|
||||
"s": Nombre.SING,
|
||||
"p": Nombre.PLUR,
|
||||
}
|
||||
verbe_temps: dict[str, Temps] = {
|
||||
"ind:pre": Temps.PRESENT,
|
||||
"ind:fut": Temps.FUTUR,
|
||||
"ind:imp": Temps.IMPARFAIT,
|
||||
}
|
||||
verbe_personne: dict[str, Nombre] = {
|
||||
"3s": Nombre.SING,
|
||||
"3p": Nombre.PLUR,
|
||||
}
|
||||
|
||||
dataset: list[Mot]
|
||||
lemfreq: dict[str, float]
|
||||
|
||||
def __init__(self, dataset, lemfreq):
|
||||
self.dataset = dataset
|
||||
self.lemfreq = lemfreq
|
||||
|
||||
@classmethod
|
||||
def _ensure_uncompressed(cls):
|
||||
|
@ -83,32 +127,117 @@ class Lexique:
|
|||
f"Uncompressed dataset still missing at {cls.LEXIQUE_DIR_PATH} after extraction"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _find_word_key(cls, mot: Mot):
|
||||
return (mot.lemme, mot.cat_gram, cls.Parsers.rev_genre[mot.genre])
|
||||
|
||||
@classmethod
|
||||
def _find_word(cls, dataset: list[Mot], row: dict) -> t.Optional[Mot]:
|
||||
str_lemme = row["lemme"]
|
||||
cat_gram = CatGram.parse(row["cgram"])
|
||||
genre = row["genre"] if cat_gram == CatGram.NOM else ""
|
||||
row_key = (
|
||||
str_lemme,
|
||||
cat_gram,
|
||||
genre,
|
||||
)
|
||||
lemme_pos = bisect_left(
|
||||
dataset,
|
||||
row_key,
|
||||
key=cls._find_word_key,
|
||||
)
|
||||
if lemme_pos >= len(dataset):
|
||||
return None
|
||||
out = dataset[lemme_pos]
|
||||
if row_key != cls._find_word_key(out):
|
||||
return None
|
||||
return dataset[lemme_pos]
|
||||
|
||||
@classmethod
|
||||
def parse(cls) -> "Lexique":
|
||||
out = []
|
||||
rows = []
|
||||
lemfreq: dict[str, float] = {}
|
||||
|
||||
with cls.LEXIQUE_PATH.open("r") as h:
|
||||
reader = csv.DictReader(h, dialect="excel-tab")
|
||||
for row in reader:
|
||||
if not row["cgram"]:
|
||||
continue
|
||||
try:
|
||||
rows.append(row)
|
||||
|
||||
# First pass: generate canonical forms (lemmes)
|
||||
for row in rows:
|
||||
cat_gram = CatGram.parse(row["cgram"])
|
||||
if (row["lemme"] != row["ortho"]) and not (
|
||||
cat_gram == CatGram.NOM and row["genre"] == "f" and row["nombre"] == "s"
|
||||
):
|
||||
# Un nom singulier féminin est considéré comme forme canonique
|
||||
continue
|
||||
|
||||
genre: t.Optional[Genre] = None
|
||||
if cat_gram == CatGram.NOM:
|
||||
genre = cls.Parsers.genre.get(row["genre"], None)
|
||||
out.append(
|
||||
Word(
|
||||
word=row["ortho"],
|
||||
Mot(
|
||||
mot=row["ortho"],
|
||||
lemme=row["lemme"],
|
||||
cat_gram=CatGram.parse(row["cgram"]),
|
||||
freq_lem=float(row["freqlemlivres"]),
|
||||
freq=float(row["freqlivres"]),
|
||||
cat_gram=cat_gram,
|
||||
freq=float(row["freqlemlivres"]),
|
||||
genre=genre,
|
||||
)
|
||||
)
|
||||
except ValueError as exn:
|
||||
print(row)
|
||||
raise exn from exn
|
||||
return cls(out)
|
||||
|
||||
out.sort(key=cls._find_word_key) # We need to bisect on this.
|
||||
|
||||
# Second pass: populate variants
|
||||
for row in rows:
|
||||
# Populate lemfreq
|
||||
old_freq = lemfreq.get(row["ortho"], 0.0)
|
||||
lemfreq[row["ortho"]] = max(
|
||||
old_freq,
|
||||
float(row["freqlemlivres"]),
|
||||
float(row["freqlemfilms2"]),
|
||||
)
|
||||
|
||||
lemme = cls._find_word(out, row)
|
||||
if lemme is None:
|
||||
continue
|
||||
|
||||
if lemme.cat_gram == CatGram.NOM:
|
||||
nombres = match_enum_or_all(row["nombre"], cls.Parsers.nombre, Nombre)
|
||||
for nombre in nombres:
|
||||
lemme.variantes[(nombre,)] = row["ortho"]
|
||||
|
||||
elif lemme.cat_gram == CatGram.VERBE:
|
||||
infover = row["infover"].split(";")
|
||||
for raw_ver in infover:
|
||||
ver = raw_ver.split(":")
|
||||
|
||||
temps = None
|
||||
personne = None
|
||||
temps_select = ":".join(ver[0:2])
|
||||
if temps_select not in Temps:
|
||||
continue
|
||||
temps = Temps(temps_select)
|
||||
personne = cls.Parsers.verbe_personne.get(ver[2], None)
|
||||
if personne is None:
|
||||
continue # we're not interested in all conj. persons
|
||||
|
||||
lemme.variantes[(temps, personne)] = row["ortho"]
|
||||
|
||||
elif lemme.cat_gram == CatGram.ADJECTIF:
|
||||
genres = match_enum_or_all(row["genre"], cls.Parsers.genre, Genre)
|
||||
nombres = match_enum_or_all(row["nombre"], cls.Parsers.nombre, Nombre)
|
||||
for genre, nombre in itertools.product(genres, nombres):
|
||||
lemme.variantes[(genre, nombre)] = row["ortho"]
|
||||
|
||||
# No need to match adverbs (invariant)
|
||||
return cls(out, lemfreq)
|
||||
|
||||
def most_common(
|
||||
self, cat_gram: CatGram, threshold: t.Optional[int] = None
|
||||
) -> list[Word]:
|
||||
) -> list[Mot]:
|
||||
if threshold is None:
|
||||
try:
|
||||
threshold = self.PRESET_THRESHOLD_BY_CAT[cat_gram]
|
||||
|
@ -120,3 +249,52 @@ class Lexique:
|
|||
out = list(filter(lambda word: word.cat_gram == cat_gram, self.dataset))
|
||||
out.sort(key=lambda word: word.freq, reverse=True)
|
||||
return out[:threshold]
|
||||
|
||||
def word_db(self, thresholds: t.Optional[dict[CatGram, int]] = None) -> WordDb:
|
||||
"""Convert to a WordDb"""
|
||||
thresholds = thresholds or {}
|
||||
|
||||
noms = self.most_common(CatGram.NOM, thresholds.get(CatGram.NOM, None))
|
||||
db_noms = [
|
||||
Nom(
|
||||
genre=t.cast(Genre, nom.genre), # not None for noms
|
||||
sing=nom.variantes[(Nombre.SING,)],
|
||||
plur=nom.variantes[(Nombre.PLUR,)],
|
||||
)
|
||||
for nom in noms
|
||||
]
|
||||
|
||||
adjectifs = self.most_common(
|
||||
CatGram.ADJECTIF, thresholds.get(CatGram.ADJECTIF, None)
|
||||
)
|
||||
db_adjectifs = [
|
||||
Adjectif(
|
||||
masc_sing=adj.variantes[(Genre.MASC, Nombre.SING)],
|
||||
masc_plur=adj.variantes[(Genre.MASC, Nombre.PLUR)],
|
||||
fem_sing=adj.variantes[(Genre.FEM, Nombre.SING)],
|
||||
fem_plur=adj.variantes[(Genre.FEM, Nombre.PLUR)],
|
||||
)
|
||||
for adj in adjectifs
|
||||
]
|
||||
|
||||
verbes = self.most_common(CatGram.VERBE, thresholds.get(CatGram.VERBE, None))
|
||||
db_verbes = [
|
||||
Verbe(
|
||||
present_sing=verbe.variantes[(Temps.PRESENT, Nombre.SING)],
|
||||
present_plur=verbe.variantes[(Temps.PRESENT, Nombre.PLUR)],
|
||||
futur_sing=verbe.variantes[(Temps.FUTUR, Nombre.SING)],
|
||||
futur_plur=verbe.variantes[(Temps.FUTUR, Nombre.PLUR)],
|
||||
imparfait_sing=verbe.variantes[(Temps.IMPARFAIT, Nombre.SING)],
|
||||
imparfait_plur=verbe.variantes[(Temps.IMPARFAIT, Nombre.PLUR)],
|
||||
)
|
||||
for verbe in verbes
|
||||
]
|
||||
|
||||
adverbes = self.most_common(
|
||||
CatGram.ADVERBE, thresholds.get(CatGram.ADVERBE, None)
|
||||
)
|
||||
db_adverbes = [Adverbe(adv=adv.mot) for adv in adverbes]
|
||||
|
||||
return WordDb(
|
||||
noms=db_noms, adjectifs=db_adjectifs, verbes=db_verbes, adverbes=db_adverbes
|
||||
)
|
||||
|
|
256
pwgen_fr/morphalou.py
Normal file
256
pwgen_fr/morphalou.py
Normal file
|
@ -0,0 +1,256 @@
|
|||
""" Reads the Morphalou dataset, in its TSV form """
|
||||
|
||||
import itertools
|
||||
import logging
|
||||
import subprocess
|
||||
import typing as t
|
||||
from pathlib import Path
|
||||
|
||||
from lxml import etree
|
||||
|
||||
from .word_db import Adjectif, Adverbe, Genre, Nom, Nombre, Temps, Verbe, WordDb
|
||||
|
||||
TSV_NS = {
|
||||
"tsv": "http://www.tei-c.org/ns/1.0",
|
||||
"xml": "http://www.w3.org/XML/1998/namespace",
|
||||
}
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MorphalouSet:
|
||||
MORPHALOU_DIR_PATH = (
|
||||
Path(__file__).parent.parent / "data/raw/Morphalou3.1_formatTEI"
|
||||
)
|
||||
MORPHALOU_FILENAME_TEMPLATE = "{cat_name}_Morphalou3.1_TEI.xml"
|
||||
|
||||
CAT_MAPPING: dict[t.Type[t.NamedTuple], str] = {
|
||||
Nom: "commonNoun",
|
||||
Adjectif: "adjective",
|
||||
Verbe: "verb",
|
||||
Adverbe: "adverb",
|
||||
}
|
||||
|
||||
word_db: WordDb
|
||||
|
||||
def __init__(self):
|
||||
self.word_db = WordDb()
|
||||
|
||||
@classmethod
|
||||
def _ensure_uncompressed(cls):
|
||||
"""Ensures the dataset is uncompressed"""
|
||||
if cls.MORPHALOU_DIR_PATH.exists():
|
||||
return
|
||||
|
||||
lexique_archive = cls.MORPHALOU_DIR_PATH.with_suffix(".tar.xz")
|
||||
if not lexique_archive.exists():
|
||||
logger.error("Missing compressed dataset at %s", lexique_archive)
|
||||
raise Exception(f"Missing compressed dataset at {lexique_archive}")
|
||||
|
||||
logger.info("Uncompressing dataset")
|
||||
subprocess.check_call(
|
||||
[
|
||||
"tar",
|
||||
"-xJf",
|
||||
lexique_archive.as_posix(),
|
||||
"-C",
|
||||
lexique_archive.parent.as_posix(),
|
||||
]
|
||||
)
|
||||
|
||||
if not cls.MORPHALOU_DIR_PATH.exists():
|
||||
logger.error(
|
||||
"Uncompressed dataset still missing at %s after extraction",
|
||||
cls.MORPHALOU_DIR_PATH,
|
||||
)
|
||||
raise Exception(
|
||||
f"Uncompressed dataset still missing at {cls.MORPHALOU_DIR_PATH} after extraction"
|
||||
)
|
||||
|
||||
def parse(self):
|
||||
"""Parses the dataset"""
|
||||
self.__class__._ensure_uncompressed()
|
||||
|
||||
for cat, cat_file in self.__class__.CAT_MAPPING.items():
|
||||
word_db_elt = WordDb.CATEGORY_TO_ATTR[cat]
|
||||
logging.info("Parsing %s...", word_db_elt)
|
||||
setattr(
|
||||
self.word_db,
|
||||
word_db_elt,
|
||||
getattr(self, f"_parse_{word_db_elt}")(
|
||||
self.__class__.MORPHALOU_DIR_PATH
|
||||
/ self.__class__.MORPHALOU_FILENAME_TEMPLATE.format(
|
||||
cat_name=cat_file
|
||||
)
|
||||
),
|
||||
)
|
||||
|
||||
def _tsv_elems(self, tsv_path: Path):
|
||||
"""Opens a TSV file, and returns the <body> node, direct parent of all the
|
||||
relevant nodes"""
|
||||
with tsv_path.open("r") as h:
|
||||
tree = etree.parse(h)
|
||||
root = tree.getroot()
|
||||
body = root.find("./tsv:text/tsv:body", TSV_NS)
|
||||
return body
|
||||
|
||||
def _parse_noms(self, tsv_path: Path) -> list[Nom]:
|
||||
"""Parse the nouns"""
|
||||
root = self._tsv_elems(tsv_path)
|
||||
out: list[Nom] = []
|
||||
|
||||
for entry in root.iterfind("./tsv:entry", TSV_NS):
|
||||
try:
|
||||
genre = self._genre(
|
||||
entry.find(
|
||||
"./tsv:form[@type='lemma']/tsv:gramGrp/tsv:gen", TSV_NS
|
||||
).text
|
||||
)
|
||||
except AttributeError:
|
||||
continue # some nouns don't have a gender defined, somehow -- ignore
|
||||
|
||||
forms = {}
|
||||
for inflected in entry.iterfind("./tsv:form[@type='inflected']", TSV_NS):
|
||||
orth = inflected.find("./tsv:orth", TSV_NS).text
|
||||
nombres = self._nombre_set(
|
||||
inflected.find("./tsv:gramGrp/tsv:number", TSV_NS).text
|
||||
)
|
||||
for form in nombres:
|
||||
forms[form] = orth
|
||||
try:
|
||||
out.append(
|
||||
Nom(
|
||||
genre=genre,
|
||||
sing=forms[Nombre.SING],
|
||||
plur=forms[Nombre.PLUR],
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
continue # cannot be inflected to all required forms: skip
|
||||
|
||||
return out
|
||||
|
||||
def _parse_adjectifs(self, tsv_path: Path) -> list[Adjectif]:
|
||||
"""Parse the adjectives"""
|
||||
root = self._tsv_elems(tsv_path)
|
||||
out: list[Adjectif] = []
|
||||
|
||||
for entry in root.iterfind("./tsv:entry", TSV_NS):
|
||||
forms = {}
|
||||
for inflected in entry.iterfind("./tsv:form[@type='inflected']", TSV_NS):
|
||||
orth = inflected.find("./tsv:orth", TSV_NS).text
|
||||
gram_grp = inflected.find("./tsv:gramGrp", TSV_NS)
|
||||
genres = self._genre_set(gram_grp.find("./tsv:gen", TSV_NS).text)
|
||||
nombres = self._nombre_set(gram_grp.find("./tsv:number", TSV_NS).text)
|
||||
|
||||
for form in itertools.product(genres, nombres):
|
||||
forms[form] = orth
|
||||
try:
|
||||
out.append(
|
||||
Adjectif(
|
||||
masc_sing=forms[Genre.MASC, Nombre.SING],
|
||||
masc_plur=forms[Genre.MASC, Nombre.PLUR],
|
||||
fem_sing=forms[Genre.FEM, Nombre.SING],
|
||||
fem_plur=forms[Genre.FEM, Nombre.PLUR],
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
continue # cannot be inflected to all required forms: skip
|
||||
|
||||
return out
|
||||
|
||||
def _parse_verbes(self, tsv_path: Path) -> list[Verbe]:
|
||||
"""Parse the verbs"""
|
||||
root = self._tsv_elems(tsv_path)
|
||||
out: list[Verbe] = []
|
||||
|
||||
for entry in root.iterfind("./tsv:entry", TSV_NS):
|
||||
forms = {}
|
||||
for inflected in entry.iterfind("./tsv:form[@type='inflected']", TSV_NS):
|
||||
gram_grp = inflected.find("./tsv:gramGrp", TSV_NS)
|
||||
|
||||
# Order of tests is important! If mood == 'participle', there is no
|
||||
# 'person' defined.
|
||||
if (
|
||||
gram_grp.find("./tsv:mood", TSV_NS).text != "indicative"
|
||||
or gram_grp.find("./tsv:per", TSV_NS).text != "thirdPerson"
|
||||
):
|
||||
continue # irrelevant for us
|
||||
|
||||
temps = self._tense(gram_grp.find("./tsv:tns", TSV_NS).text)
|
||||
if temps is None:
|
||||
continue # irrelevant for us
|
||||
|
||||
nombres = self._nombre_set(gram_grp.find("./tsv:number", TSV_NS).text)
|
||||
|
||||
orth = inflected.find("./tsv:orth", TSV_NS).text
|
||||
for nombre in nombres:
|
||||
forms[(temps, nombre)] = orth
|
||||
try:
|
||||
out.append(
|
||||
Verbe(
|
||||
present_sing=forms[Temps.PRESENT, Nombre.SING],
|
||||
present_plur=forms[Temps.PRESENT, Nombre.PLUR],
|
||||
futur_sing=forms[Temps.FUTUR, Nombre.SING],
|
||||
futur_plur=forms[Temps.FUTUR, Nombre.PLUR],
|
||||
imparfait_sing=forms[Temps.IMPARFAIT, Nombre.SING],
|
||||
imparfait_plur=forms[Temps.IMPARFAIT, Nombre.PLUR],
|
||||
)
|
||||
)
|
||||
except KeyError:
|
||||
continue # cannot be inflected to all required forms: skip
|
||||
|
||||
return out
|
||||
|
||||
def _parse_adverbes(self, tsv_path: Path) -> list[Adverbe]:
|
||||
"""Parse the adverbs"""
|
||||
root = self._tsv_elems(tsv_path)
|
||||
out: list[Adverbe] = []
|
||||
|
||||
for entry in root.iterfind("./tsv:entry", TSV_NS):
|
||||
# We're only interested in the lemma form
|
||||
orth = entry.find("./tsv:form[@type='lemma']/tsv:orth", TSV_NS)
|
||||
assert orth is not None
|
||||
adv = orth.text
|
||||
out.append(Adverbe(adv=adv))
|
||||
|
||||
return out
|
||||
|
||||
@staticmethod
|
||||
def _genre_set(genre: str) -> list[Genre]:
|
||||
return {
|
||||
"masculine": [Genre.MASC],
|
||||
"feminine": [Genre.FEM],
|
||||
"invariable": [Genre.MASC, Genre.FEM],
|
||||
}[genre]
|
||||
|
||||
@staticmethod
|
||||
def _genre(genre: str) -> Genre:
|
||||
return {
|
||||
"masculine": Genre.MASC,
|
||||
"feminine": Genre.FEM,
|
||||
"invariable": Genre.INV,
|
||||
}[genre]
|
||||
|
||||
@staticmethod
|
||||
def _nombre(nombre: str) -> Nombre:
|
||||
return {
|
||||
"singular": Nombre.SING,
|
||||
"plural": Nombre.PLUR,
|
||||
}[nombre]
|
||||
|
||||
@staticmethod
|
||||
def _nombre_set(nombre: str) -> list[Nombre]:
|
||||
return {
|
||||
"singular": [Nombre.SING],
|
||||
"plural": [Nombre.PLUR],
|
||||
"invariable": [Nombre.SING, Nombre.PLUR],
|
||||
}[nombre]
|
||||
|
||||
@staticmethod
|
||||
def _tense(tense: str) -> t.Optional[Temps]:
|
||||
return {
|
||||
"present": Temps.PRESENT,
|
||||
"imperfect": Temps.IMPARFAIT,
|
||||
"future": Temps.FUTUR,
|
||||
}.get(tense, None)
|
74
pwgen_fr/morphalou_frequency.py
Normal file
74
pwgen_fr/morphalou_frequency.py
Normal file
|
@ -0,0 +1,74 @@
|
|||
""" Generates a worddb based on Morphalou, but limits to frequent words based on
|
||||
external sources (eg Lexique) """
|
||||
|
||||
import logging
|
||||
import typing as t
|
||||
|
||||
from . import lexique, morphalou
|
||||
from .word_db import Adjectif, Adverbe, Genre, Nom, Nombre, Temps, Verbe, WordDb
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MorphalouFreqSet:
|
||||
morphalou_db: WordDb
|
||||
lexique: lexique.Lexique
|
||||
filtered_db: WordDb
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
morphalou_db: t.Optional[WordDb] = None,
|
||||
lexique: t.Optional[lexique.Lexique] = None,
|
||||
):
|
||||
if not morphalou_db:
|
||||
morphalou_set = morphalou.MorphalouSet()
|
||||
morphalou_set.parse()
|
||||
self.morphalou_db = morphalou_set.word_db
|
||||
else:
|
||||
self.morphalou_db = morphalou_db
|
||||
|
||||
if not lexique:
|
||||
self.lexique = lexique.Lexique.parse()
|
||||
else:
|
||||
self.lexique = lexique
|
||||
|
||||
self.filtered_db = self._filter_lexique()
|
||||
|
||||
def _filter_nom(self, nom: Nom) -> bool:
|
||||
freq = max(
|
||||
self.lexique.lemfreq.get(nom.sing, 0.0),
|
||||
self.lexique.lemfreq.get(nom.plur, 0.0),
|
||||
)
|
||||
return freq > 0
|
||||
|
||||
def _filter_adjectif(self, adjectif: Adjectif) -> bool:
|
||||
freq = max(
|
||||
self.lexique.lemfreq.get(adjectif.masc_sing, 0.0),
|
||||
self.lexique.lemfreq.get(adjectif.fem_sing, 0.0),
|
||||
)
|
||||
return freq > 0
|
||||
|
||||
def _filter_verbe(self, verbe: Verbe) -> bool:
|
||||
freq = max(
|
||||
self.lexique.lemfreq.get(verbe.present_sing, 0.0),
|
||||
self.lexique.lemfreq.get(verbe.futur_sing, 0.0),
|
||||
self.lexique.lemfreq.get(verbe.imparfait_sing, 0.0),
|
||||
self.lexique.lemfreq.get(verbe.present_plur, 0.0),
|
||||
self.lexique.lemfreq.get(verbe.futur_plur, 0.0),
|
||||
self.lexique.lemfreq.get(verbe.imparfait_plur, 0.0),
|
||||
)
|
||||
return freq > 0
|
||||
|
||||
def _filter_adverbe(self, adverbe: Adverbe) -> bool:
|
||||
if " " in adverbe.adv:
|
||||
return False
|
||||
freq = self.lexique.lemfreq.get(adverbe.adv, 0.0)
|
||||
return freq > 0
|
||||
|
||||
def _filter_lexique(self) -> WordDb:
|
||||
out = WordDb()
|
||||
out.noms = list(filter(self._filter_nom, self.morphalou_db.noms))
|
||||
out.adjectifs = list(filter(self._filter_adjectif, self.morphalou_db.adjectifs))
|
||||
out.verbes = list(filter(self._filter_verbe, self.morphalou_db.verbes))
|
||||
out.adverbes = list(filter(self._filter_adverbe, self.morphalou_db.adverbes))
|
||||
return out
|
206
pwgen_fr/word_db.py
Normal file
206
pwgen_fr/word_db.py
Normal file
|
@ -0,0 +1,206 @@
|
|||
""" A pre-processed database of words, independant of their source """
|
||||
|
||||
import gzip
|
||||
import json
|
||||
import secrets
|
||||
import typing as t
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class Genre(Enum):
|
||||
MASC = "masculin"
|
||||
FEM = "féminin"
|
||||
INV = "invariable" # pour les noms uniquement
|
||||
|
||||
@classmethod
|
||||
def pick(cls) -> "Genre":
|
||||
"""random-pick (avoids inv)"""
|
||||
return secrets.choice([cls.MASC, cls.FEM])
|
||||
|
||||
|
||||
class Nombre(Enum):
|
||||
SING = "singulier"
|
||||
PLUR = "pluriel"
|
||||
|
||||
@classmethod
|
||||
def pick(cls) -> "Nombre":
|
||||
"""random-pick"""
|
||||
return secrets.choice(list(cls))
|
||||
|
||||
|
||||
class Temps(Enum):
|
||||
PRESENT = "present"
|
||||
FUTUR = "futur"
|
||||
IMPARFAIT = "imparfait"
|
||||
|
||||
@classmethod
|
||||
def pick(cls) -> "Temps":
|
||||
"""random-pick"""
|
||||
return secrets.choice(list(cls))
|
||||
|
||||
|
||||
class Nom(t.NamedTuple):
|
||||
"""Nom commun"""
|
||||
|
||||
genre: Genre
|
||||
sing: str
|
||||
plur: str
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.sing}"
|
||||
|
||||
def accord(self, nombre: Nombre) -> str:
|
||||
"""Accorde en nombre"""
|
||||
return getattr(self, nombre.name.lower())
|
||||
|
||||
@property
|
||||
def genre_or_pick(self) -> Genre:
|
||||
"""Genre of the noun, or random-pick if invariable"""
|
||||
if self.genre == Genre.INV:
|
||||
return Genre.pick()
|
||||
return self.genre
|
||||
|
||||
@property
|
||||
def serialized(self):
|
||||
return {"genre": self.genre.name, "sing": self.sing, "plur": self.plur}
|
||||
|
||||
@classmethod
|
||||
def unserialized(cls, kwargs):
|
||||
genre = Genre[kwargs.pop("genre")]
|
||||
return cls(**kwargs, genre=genre)
|
||||
|
||||
|
||||
class Adjectif(t.NamedTuple):
|
||||
masc_sing: str
|
||||
masc_plur: str
|
||||
fem_sing: str
|
||||
fem_plur: str
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.masc_sing}/{self.fem_sing}"
|
||||
|
||||
def accord(self, genre: Genre, nombre: Nombre) -> str:
|
||||
"""Accorde en genre et en nombre"""
|
||||
return getattr(self, f"{genre.name.lower()}_{nombre.name.lower()}")
|
||||
|
||||
@property
|
||||
def serialized(self):
|
||||
return self._asdict()
|
||||
|
||||
@classmethod
|
||||
def unserialized(cls, kwargs):
|
||||
return cls(**kwargs)
|
||||
|
||||
|
||||
class Verbe(t.NamedTuple):
|
||||
present_sing: str
|
||||
present_plur: str
|
||||
futur_sing: str
|
||||
futur_plur: str
|
||||
imparfait_sing: str
|
||||
imparfait_plur: str
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"{self.present_sing}"
|
||||
|
||||
def accord(self, temps: Temps, nombre: Nombre) -> str:
|
||||
"""Accorde en temps et en nombre (seule la 3è pers. est utilisée)"""
|
||||
return getattr(self, f"{temps.name.lower()}_{nombre.name.lower()}")
|
||||
|
||||
@property
|
||||
def serialized(self):
|
||||
return self._asdict()
|
||||
|
||||
@classmethod
|
||||
def unserialized(cls, kwargs):
|
||||
return cls(**kwargs)
|
||||
|
||||
|
||||
class Adverbe(t.NamedTuple):
|
||||
"""Packed as named tuple for consistence"""
|
||||
|
||||
adv: str
|
||||
|
||||
def __str__(self) -> str:
|
||||
return self.adv
|
||||
|
||||
def accord(self) -> str:
|
||||
"""for consistence"""
|
||||
return self.adv
|
||||
|
||||
@property
|
||||
def serialized(self):
|
||||
return self._asdict()
|
||||
|
||||
@classmethod
|
||||
def unserialized(cls, kwargs):
|
||||
return cls(**kwargs)
|
||||
|
||||
|
||||
class WordDb:
|
||||
"""Base de donnée de mots, sérialisable"""
|
||||
|
||||
SERIALIZED_GZ_LOCATION = Path(__file__).parent.parent / "morphalou.json.gz"
|
||||
|
||||
_serialize_data: dict[str, t.Type[t.NamedTuple]] = {
|
||||
"noms": Nom,
|
||||
"adjectifs": Adjectif,
|
||||
"verbes": Verbe,
|
||||
"adverbes": Adverbe,
|
||||
}
|
||||
|
||||
CATEGORY_TO_ATTR: dict = {
|
||||
Nom: "noms",
|
||||
Adjectif: "adjectifs",
|
||||
Verbe: "verbes",
|
||||
Adverbe: "adverbes",
|
||||
}
|
||||
|
||||
noms: list[Nom]
|
||||
adjectifs: list[Adjectif]
|
||||
verbes: list[Verbe]
|
||||
adverbes: list[Adverbe]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
noms: t.Optional[list[Nom]] = None,
|
||||
adjectifs: t.Optional[list[Adjectif]] = None,
|
||||
verbes: t.Optional[list[Verbe]] = None,
|
||||
adverbes: t.Optional[list[Adverbe]] = None,
|
||||
):
|
||||
self.noms = noms or []
|
||||
self.adjectifs = adjectifs or []
|
||||
self.verbes = verbes or []
|
||||
self.adverbes = adverbes or []
|
||||
|
||||
def serialize(self) -> dict:
|
||||
"""Serialize to plain dictionary (no classes)"""
|
||||
return {
|
||||
attr: [x.serialized for x in getattr(self, attr)]
|
||||
for attr in self.__class__._serialize_data
|
||||
}
|
||||
|
||||
def save(self, fd):
|
||||
"""Serialize to this stream"""
|
||||
json.dump(self.serialize(), fd)
|
||||
|
||||
@classmethod
|
||||
@t.no_type_check # serialization is messy
|
||||
def unserialize(cls, data: dict) -> "WordDb":
|
||||
"""Reverses :serialize:"""
|
||||
parsed = {}
|
||||
for attr, attr_cls in cls._serialize_data.items():
|
||||
parsed[attr] = list(map(attr_cls.unserialized, data[attr]))
|
||||
return cls(**parsed)
|
||||
|
||||
@classmethod
|
||||
def load(cls, fd) -> "WordDb":
|
||||
"""Unserialize from this stream"""
|
||||
return cls.unserialize(json.load(fd))
|
||||
|
||||
@classmethod
|
||||
def autoload(cls) -> "WordDb":
|
||||
"""Unserialize from default source"""
|
||||
with gzip.open(cls.SERIALIZED_GZ_LOCATION) as h:
|
||||
return cls.load(h)
|
4
setup.py
4
setup.py
|
@ -25,9 +25,7 @@ setup(
|
|||
install_requires=parse_requirements(),
|
||||
entry_points={
|
||||
"console_scripts": [
|
||||
# (
|
||||
# "proxmox-snapshot-review = proxmox_scripts.snapshots:review_snapshots",
|
||||
# ),
|
||||
("pwgen-fr = pwgen_fr.entrypoints:pwgen_fr",),
|
||||
]
|
||||
},
|
||||
)
|
||||
|
|
Loading…
Reference in a new issue