2024-11-20 12:54:09 +01:00
|
|
|
\section{A frontend model for the Cortex A72}
|
2024-11-22 14:14:32 +01:00
|
|
|
|
|
|
|
\begin{frame}{The Cortex A72}
|
|
|
|
\begin{itemize}
|
|
|
|
\item{} Low-power ARM CPU
|
|
|
|
\item{} CPU of the Raspberry Pi 4: easily available
|
|
|
|
\item{} Aarch64, NEON SIMD
|
|
|
|
\medskip{}
|
|
|
|
\item{} ARM CPUs not usually modeled!
|
|
|
|
\item{} Backend modeled by \palmed{}
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}
|
|
|
|
\centering
|
|
|
|
\includegraphics[width=0.9\textwidth]{A72_pipeline_diagram.svg}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Manual model}
|
|
|
|
\begin{itemize}
|
|
|
|
\item Goal: manually craft a frontend model
|
|
|
|
\item Try to follow methods that can be automated
|
|
|
|
\item Propose a parametric model for future works, leaving question
|
|
|
|
marks on some sections
|
|
|
|
\end{itemize}
|
|
|
|
\end{frame}
|
|
|
|
|
|
|
|
\begin{frame}{Counting \uops{}}
|
|
|
|
For an instruction $i$, denote \alert{$\mucount{i}$} its number of \uops{}.
|
|
|
|
\begin{itemize}
|
|
|
|
\item{} For $k \in \nat$, construct (if possible) $\kerK_k$ a kernel:
|
|
|
|
\begin{itemize}
|
|
|
|
\item instruction $i$ + $k$ ``simple'' instructions (one \uop)
|
|
|
|
\item frontend-bound:
|
|
|
|
\[
|
|
|
|
\cyc{\kerK_k} = \dfrac{k + \mucount{i}}{3}
|
|
|
|
\]
|
|
|
|
\end{itemize}
|
|
|
|
\item{} For well-chosen $k_0$, we should have
|
|
|
|
\[
|
|
|
|
\cyc{\kerK_{k_0}} + \sfrac{1}{3} = \cyc{\kerK_{k_0+1}}
|
|
|
|
\]
|
|
|
|
\item{} Measure to verify
|
|
|
|
\bigskip
|
|
|
|
\item{} If so, \textbf{\[
|
|
|
|
\mucount{i} = 3 \cyc{\kerK_{k_0}} - k
|
|
|
|
\]}
|
|
|
|
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
\end{frame}
|