Updated slides, Coq demo, and OCaml exercise.
This commit is contained in:
parent
cb1a56bbda
commit
f31a263ff7
6 changed files with 179 additions and 2 deletions
|
@ -69,7 +69,8 @@ We also show the limits of dependently-typed functional programming.
|
|||
Syntax and operational semantics, on paper and on a machine
|
||||
([slides 01a](slides/fpottier-01a.pdf))
|
||||
([slides 01b](slides/fpottier-01b.pdf))
|
||||
([Coq demo](coq/DemoSyntaxReduction.v)).
|
||||
([Coq demo](coq/DemoSyntaxReduction.v))
|
||||
([OCaml solution to Newton-Raphson exercise](ocaml/NewtonRaphson.ml)).
|
||||
* (29/09/2017)
|
||||
From a small-step semantics down to an efficient interpreter,
|
||||
in several stages.
|
||||
|
|
|
@ -137,7 +137,28 @@ Hint Extern 1 (_ = _) => autosubst : autosubst.
|
|||
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
(* Let us now prove that the semantics is stable under arbitrary substitutions. *)
|
||||
(* Demo: a term that reduces to itself. *)
|
||||
|
||||
Definition Delta :=
|
||||
Lam (App (Var 0) (Var 0)).
|
||||
|
||||
Definition Omega :=
|
||||
App Delta Delta.
|
||||
|
||||
Goal
|
||||
red Omega Omega.
|
||||
Proof.
|
||||
(* Apply the beta-reduction rule.
|
||||
(This forces Coq to unfold the left-hand [Omega].) *)
|
||||
eapply RedBeta.
|
||||
(* Check this equality. *)
|
||||
asimpl. (* optional *)
|
||||
reflexivity.
|
||||
Qed.
|
||||
|
||||
(* -------------------------------------------------------------------------- *)
|
||||
|
||||
(* Let us prove that the semantics is stable under arbitrary substitutions. *)
|
||||
|
||||
Lemma red_subst:
|
||||
forall t1 t2,
|
||||
|
@ -223,3 +244,7 @@ Qed.
|
|||
(* As another EXERCISE, extend the operational semantics with a rule that
|
||||
allows strong reduction, that is, reduction under a lambda-abstraction.
|
||||
This exercise is more difficult; do not hesitate to ask for help or hints. *)
|
||||
|
||||
(* Another suggested EXERCISE: define call-by-value reduction, [cbv]. Prove
|
||||
that [cbv] is a subset of [red]. Prove that values do not reduce. Prove
|
||||
that [cbv] is deterministic. *)
|
||||
|
|
151
ocaml/NewtonRaphson.ml
Normal file
151
ocaml/NewtonRaphson.ml
Normal file
|
@ -0,0 +1,151 @@
|
|||
(* A couple abbreviations. *)
|
||||
|
||||
type 'a thunk = 'a Lazy.t
|
||||
let force = Lazy.force
|
||||
|
||||
(* The definition of (finite or infinite) lazy lists. *)
|
||||
|
||||
type 'a stream =
|
||||
'a head thunk
|
||||
|
||||
and 'a head =
|
||||
| Nil
|
||||
| Cons of 'a * 'a stream
|
||||
|
||||
(* Calling [tail xs] demands the head of the stream, that is, forces
|
||||
the computation of the first element of the stream (if there is one). *)
|
||||
|
||||
let tail xs =
|
||||
match force xs with
|
||||
| Nil -> assert false
|
||||
| Cons (_, xs) -> xs
|
||||
|
||||
(* Newton-Raphson approximation, following Hughes,
|
||||
"Why functional programming matters", 1990. *)
|
||||
|
||||
let next n x =
|
||||
(x +. n /. x) /. 2.
|
||||
|
||||
(* An infinite stream obtained by iterating [f]. *)
|
||||
|
||||
(* The following definition, copied almost literally from Hughes'
|
||||
paper, is correct but somewhat unsatisfactory; can you see why? Can
|
||||
you fix it? Think about it before reading the solution below. *)
|
||||
|
||||
let rec repeat (f : 'a -> 'a) (a : 'a) : 'a stream =
|
||||
lazy (Cons (a, repeat f (f a)))
|
||||
|
||||
(*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*
|
||||
*)
|
||||
|
||||
(* In the above definition of [repeat], the function call [f a] takes
|
||||
place when the *first* element of the list is demanded by the consumer.
|
||||
That's too early -- ideally, this function call should take place only
|
||||
when the *second* element is demanded, since the result of [f a] is the
|
||||
second element in the infinite stream [a], [f a], [f (f a)], ... *)
|
||||
|
||||
(* This code exhibits the problem: *)
|
||||
|
||||
let () =
|
||||
let x = ref 0 in
|
||||
let f () = incr x; () in
|
||||
let xs = repeat f () in
|
||||
let xs = tail xs in
|
||||
(* This assertion fails because [x] has been incremented once: *)
|
||||
assert (!x = 0);
|
||||
ignore xs
|
||||
|
||||
(* This can be fixed in several ways. One solution is to let [repeat] take an
|
||||
argument of type ['a thunk] instead of ['a]. This approach is in fact the
|
||||
standard encoding of call-by-need into call-by-value, applied to Hughes'
|
||||
code. *)
|
||||
|
||||
let rec repeat (f : 'a -> 'a) (a : 'a thunk) : 'a stream =
|
||||
lazy (
|
||||
Cons (
|
||||
force a,
|
||||
repeat f (lazy (f (force a)))
|
||||
)
|
||||
)
|
||||
|
||||
(* It can also be written as follows. *)
|
||||
|
||||
let rec repeat (f : 'a -> 'a) (a : 'a thunk) : 'a stream =
|
||||
lazy (
|
||||
let a = force a in
|
||||
Cons (
|
||||
a,
|
||||
repeat f (lazy (f a))
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
(* We define a wrapper so [repeat] has the desired type again: *)
|
||||
|
||||
let repeat (f : 'a -> 'a) (a : 'a) : 'a stream =
|
||||
repeat f (lazy a)
|
||||
|
||||
(* The problematic code now behaves as desired: *)
|
||||
|
||||
let () =
|
||||
let x = ref 0 in
|
||||
let f () = incr x; () in
|
||||
let xs = repeat f () in
|
||||
(* These assertions succeed: *)
|
||||
let xs = tail xs in
|
||||
assert (!x = 0);
|
||||
let xs = tail xs in
|
||||
assert (!x = 1);
|
||||
let xs = tail xs in
|
||||
assert (!x = 2);
|
||||
ignore xs
|
||||
|
||||
(* Back to Newton-Rapshon. *)
|
||||
|
||||
let rec within (eps : float) (xs : float stream) : float =
|
||||
match force xs with
|
||||
| Nil -> assert false
|
||||
| Cons (a, xs) ->
|
||||
match force xs with
|
||||
| Nil -> assert false
|
||||
| Cons (b, _) ->
|
||||
if abs_float (a /. b -. 1.) <= eps then b
|
||||
else within eps xs
|
||||
|
||||
let sqrt (n : float) : float =
|
||||
within 0.0001 (repeat (next n) n)
|
||||
|
||||
let sqrt2 =
|
||||
sqrt 2.
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in a new issue