165 lines
4.4 KiB
OCaml
165 lines
4.4 KiB
OCaml
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* The type of lambda-terms, in de Bruijn's representation. *)
|
||
|
|
||
|
type var = int (* a de Bruijn index *)
|
||
|
type term =
|
||
|
| Var of var
|
||
|
| Lam of (* bind: *) term
|
||
|
| App of term * term
|
||
|
| Let of (* bind: *) term * term
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* Under a call-by-name regime, in a function call, the actual argument is not
|
||
|
evaluated immediately; instead, a thunk is built (a pair of the argument
|
||
|
and the environment in which it must be evaluated). Thus, an environment is
|
||
|
a list of thunks. As in call-by-value, a closure is a pair of a term and an
|
||
|
environment. (Closures and thunks differ in that a closure binds a
|
||
|
variable, the formal argument, in the term. A thunk does not.) *)
|
||
|
|
||
|
type cvalue =
|
||
|
| Clo of (* bind: *) term * cenv
|
||
|
|
||
|
and cenv =
|
||
|
thunk list
|
||
|
|
||
|
and thunk =
|
||
|
| Thunk of term * cenv
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* Environments. *)
|
||
|
|
||
|
let empty : cenv =
|
||
|
[]
|
||
|
|
||
|
exception RuntimeError
|
||
|
|
||
|
let lookup (e : cenv) (x : var) : thunk =
|
||
|
try
|
||
|
List.nth e x
|
||
|
with Failure _ ->
|
||
|
raise RuntimeError
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* An environment-based big-step call-by-name interpreter. *)
|
||
|
|
||
|
let rec eval (e : cenv) (t : term) : cvalue =
|
||
|
match t with
|
||
|
| Var x ->
|
||
|
let Thunk (t, e) = lookup e x in
|
||
|
eval e t
|
||
|
| Lam t ->
|
||
|
Clo (t, e)
|
||
|
| App (t1, t2) ->
|
||
|
let cv1 = eval e t1 in
|
||
|
let Clo (u1, e') = cv1 in
|
||
|
eval (Thunk(t2, e) :: e') u1
|
||
|
| Let (t1, t2) ->
|
||
|
eval (Thunk (t1, e) :: e) t2
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* The CPS-transformed interpreter. *)
|
||
|
|
||
|
let rec evalk (e : cenv) (t : term) (k : cvalue -> 'a) : 'a =
|
||
|
match t with
|
||
|
| Var x ->
|
||
|
let Thunk (t, e) = lookup e x in
|
||
|
evalk e t k
|
||
|
| Lam t ->
|
||
|
k (Clo (t, e))
|
||
|
| App (t1, t2) ->
|
||
|
evalk e t1 (fun cv1 ->
|
||
|
let Clo (u1, e') = cv1 in
|
||
|
evalk (Thunk(t2, e) :: e') u1 k)
|
||
|
| Let (t1, t2) ->
|
||
|
evalk (Thunk (t1, e) :: e) t2 k
|
||
|
|
||
|
let eval (e : cenv) (t : term) : cvalue =
|
||
|
evalk e t (fun cv -> cv)
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* The CPS-transformed, defunctionalized interpreter. *)
|
||
|
|
||
|
type kont =
|
||
|
| AppL of { e: cenv; t2: term; k: kont }
|
||
|
| Init
|
||
|
|
||
|
let rec evalkd (e : cenv) (t : term) (k : kont) : cvalue =
|
||
|
match t with
|
||
|
| Var x ->
|
||
|
let Thunk (t, e) = lookup e x in
|
||
|
evalkd e t k
|
||
|
| Lam t ->
|
||
|
apply k (Clo (t, e))
|
||
|
| App (t1, t2) ->
|
||
|
evalkd e t1 (AppL { e; t2; k })
|
||
|
| Let (t1, t2) ->
|
||
|
evalkd (Thunk (t1, e) :: e) t2 k
|
||
|
|
||
|
and apply (k : kont) (cv : cvalue) : cvalue =
|
||
|
match k with
|
||
|
| AppL { e; t2; k } ->
|
||
|
let cv1 = cv in
|
||
|
let Clo (u1, e') = cv1 in
|
||
|
evalkd (Thunk(t2, e) :: e') u1 k
|
||
|
| Init ->
|
||
|
cv
|
||
|
|
||
|
let eval (e : cenv) (t : term) : cvalue =
|
||
|
evalkd e t Init
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* Because [apply] has only one call site, it can be inlined, yielding a
|
||
|
slightly more compact and readable definition. *)
|
||
|
|
||
|
let rec evalkd (e : cenv) (t : term) (k : kont) : cvalue =
|
||
|
match t, k with
|
||
|
| Var x, _ ->
|
||
|
let Thunk (t, e) = lookup e x in
|
||
|
evalkd e t k
|
||
|
| Lam t, AppL { e; t2; k } ->
|
||
|
let cv1 = Clo (t, e) in
|
||
|
let Clo (u1, e') = cv1 in
|
||
|
evalkd (Thunk(t2, e) :: e') u1 k
|
||
|
| Lam t, Init ->
|
||
|
Clo (t, e)
|
||
|
| App (t1, t2), _ ->
|
||
|
evalkd e t1 (AppL { e; t2; k })
|
||
|
| Let (t1, t2), _ ->
|
||
|
evalkd (Thunk (t1, e) :: e) t2 k
|
||
|
|
||
|
let eval (e : cenv) (t : term) : cvalue =
|
||
|
evalkd e t Init
|
||
|
|
||
|
(* -------------------------------------------------------------------------- *)
|
||
|
|
||
|
(* The type [kont] is isomorphic to [(cenv * term) list]. Using the latter
|
||
|
type makes the code slightly prettier, although slightly less efficient. *)
|
||
|
|
||
|
(* At this point, one recognizes Krivine's machine. *)
|
||
|
|
||
|
let rec evalkd (e : cenv) (t : term) (k : (cenv * term) list) : cvalue =
|
||
|
match t, k with
|
||
|
| Var x, _ ->
|
||
|
let Thunk (t, e) = lookup e x in
|
||
|
evalkd e t k
|
||
|
| Lam t, (e, t2) :: k ->
|
||
|
let cv1 = Clo (t, e) in
|
||
|
let Clo (u1, e') = cv1 in
|
||
|
evalkd (Thunk(t2, e) :: e') u1 k
|
||
|
| Lam t, [] ->
|
||
|
Clo (t, e)
|
||
|
| App (t1, t2), _ ->
|
||
|
evalkd e t1 ((e, t2) :: k)
|
||
|
| Let (t1, t2), _ ->
|
||
|
evalkd (Thunk (t1, e) :: e) t2 k
|
||
|
|
||
|
let eval (e : cenv) (t : term) : cvalue =
|
||
|
evalkd e t []
|