Finish proving wp_correctness
This commit is contained in:
parent
27389f132f
commit
c2c58119be
1 changed files with 135 additions and 47 deletions
164
wp.v
164
wp.v
|
@ -441,19 +441,29 @@ Qed.
|
|||
|
||||
(***** Weakest precondition **************************************************)
|
||||
|
||||
Fixpoint wp (instr: Instr) (cond: Assert) : Assert := match instr with
|
||||
Fixpoint wp (instr: Instr) (condOpt: option Assert) : option Assert :=
|
||||
match condOpt with
|
||||
| None => None
|
||||
| Some cond => match instr with
|
||||
| skip =>
|
||||
cond
|
||||
Some cond
|
||||
| abort =>
|
||||
assertTop
|
||||
Some assertTop
|
||||
| assign x expr =>
|
||||
cond [[ x <- expr expr ]]
|
||||
Some (cond [[ x <- expr expr ]])
|
||||
| seq s1 s2 =>
|
||||
wp s1 (wp s2 cond)
|
||||
wp s1 (wp s2 condOpt)
|
||||
| ifelse guard sIf sElse =>
|
||||
((assertOfExpr guard -> wp sIf cond)
|
||||
/\ (~ (assertOfExpr guard) -> wp sElse cond)) % assert
|
||||
| while guard body => assertTop
|
||||
match (wp sIf condOpt, wp sElse condOpt) with
|
||||
| (None, _) | (_, None) => None
|
||||
| (Some wpIf, Some wpElse) =>
|
||||
Some (
|
||||
((assertOfExpr guard -> wpIf)
|
||||
/\ (~ (assertOfExpr guard) -> wpElse)) % assert)
|
||||
end
|
||||
| while guard body =>
|
||||
None
|
||||
end
|
||||
end.
|
||||
|
||||
Lemma assertImplElim {a b: Assert} :
|
||||
|
@ -472,42 +482,120 @@ Proof.
|
|||
unfold assertImplLogical. intros mem x. assumption.
|
||||
Qed.
|
||||
|
||||
Theorem wp_correctness_provable (instr: Instr) :
|
||||
forall post, ( |- [| wp instr post |] instr [| post |] ) % assert.
|
||||
Definition whatever_or_none (whatever: Assert -> Instr -> Assert -> Prop)
|
||||
(pre: option Assert) (instr: Instr) (post: option Assert) : Prop :=
|
||||
match (pre, post) with
|
||||
| (Some _, None) => False
|
||||
| (None, _) => True
|
||||
| (Some pre0, Some post0) => whatever pre0 instr post0
|
||||
end.
|
||||
|
||||
Definition provable_or_none := whatever_or_none hoare_provability.
|
||||
Notation "|-opt [| pre |] instr [| post |]" :=
|
||||
(provable_or_none pre instr post) (at level 30) : assert.
|
||||
|
||||
Definition consequence_or_none := whatever_or_none hoare_consequence.
|
||||
Notation "|=opt [| pre |] instr [| post |]" :=
|
||||
(consequence_or_none pre instr post) (at level 30) : assert.
|
||||
|
||||
Lemma postnone_is_okay {instr post}:
|
||||
(forall post0, (|-opt [|wp instr (Some post0)|] instr [|Some post0|])%assert)
|
||||
-> (|-opt [|wp instr post|] instr [|post|])%assert.
|
||||
Proof.
|
||||
induction instr; intros post; simpl.
|
||||
* apply (H_skip post).
|
||||
* apply (H_abort assertTop post).
|
||||
* apply (H_assign post v e).
|
||||
* remember (wp instr2 post) as mid eqn:midRel.
|
||||
intros prf. destruct post.
|
||||
- apply prf.
|
||||
- unfold provable_or_none; unfold whatever_or_none.
|
||||
unfold wp; destruct instr; trivial.
|
||||
Qed.
|
||||
|
||||
Theorem wp_correctness_provable (instr: Instr) :
|
||||
forall post, ( |-opt [| wp instr post |] instr [| post |] ) % assert.
|
||||
Proof.
|
||||
induction instr; intros post; apply postnone_is_okay; intros post0.
|
||||
* apply (H_skip post0).
|
||||
* apply (H_abort assertTop post0).
|
||||
* apply (H_assign post0 v e).
|
||||
* remember (wp instr2 (Some post0)) as mid eqn:midRel.
|
||||
remember (wp instr1 mid) as pre eqn:preRel.
|
||||
specialize IHinstr2 with post.
|
||||
specialize IHinstr1 with mid.
|
||||
rewrite <- midRel in IHinstr2.
|
||||
rewrite <- preRel in IHinstr1.
|
||||
apply (H_seq pre mid post instr1 instr2).
|
||||
assumption. assumption.
|
||||
* remember ((assertOfExpr e -> wp instr1 post)
|
||||
/\ (~ assertOfExpr e -> wp instr2 post)) % assert
|
||||
as pre eqn:preRel.
|
||||
apply (H_if pre post e instr1 instr2).
|
||||
simpl; rewrite <- midRel; rewrite <- preRel.
|
||||
specialize IHinstr2 with (Some post0) as IHpost.
|
||||
specialize IHinstr1 with mid as IHmid.
|
||||
rewrite <- midRel in IHpost; rewrite <- preRel in IHmid.
|
||||
destruct mid as [mid0 | ] eqn:mid0Rel.
|
||||
destruct pre as [pre0 | ] eqn: pre0Rel.
|
||||
apply (H_seq pre0 mid0 post0).
|
||||
apply IHmid. apply IHpost.
|
||||
+ unfold whatever_or_none; trivial.
|
||||
+ destruct pre.
|
||||
- unfold provable_or_none in IHmid; unfold whatever_or_none in IHmid.
|
||||
exfalso. apply IHmid.
|
||||
- unfold whatever_or_none; trivial.
|
||||
* specialize IHinstr1 with (Some post0);
|
||||
specialize IHinstr2 with (Some post0).
|
||||
destruct (wp instr1 (Some post0)) as [preIf | ] eqn:preIfRel;
|
||||
destruct (wp instr2 (Some post0)) as [preElse | ] eqn:preElseRel.
|
||||
remember ((assertOfExpr e -> preIf)
|
||||
/\ (~ assertOfExpr e -> preElse)) % assert
|
||||
as pre0 eqn:pre0Rel.
|
||||
assert (wp (ifelse e instr1 instr2) (Some post0) = (Some pre0)).
|
||||
{
|
||||
rewrite pre0Rel; simpl; rewrite preIfRel; rewrite preElseRel; congruence.
|
||||
}
|
||||
{
|
||||
rewrite H.
|
||||
apply (H_if pre0 post0 e instr1 instr2).
|
||||
- apply (H_conseq
|
||||
(pre /\ assertOfExpr e)%assert post
|
||||
(wp instr1 post) post instr1
|
||||
(IHinstr1 post)).
|
||||
+ rewrite preRel. unfold assertImplLogical.
|
||||
intros mem. intros [ [disjunctIf disjunctElse] isIf].
|
||||
(pre0 /\ assertOfExpr e)%assert post0
|
||||
preIf post0 instr1
|
||||
IHinstr1).
|
||||
+ rewrite pre0Rel. unfold assertImplLogical.
|
||||
intros mem [ [disjunctIf disjunctElse] isIf].
|
||||
apply (assertImplElim mem disjunctIf isIf).
|
||||
+ apply (assertImplSelf post).
|
||||
+ apply (assertImplSelf post0).
|
||||
- apply (H_conseq
|
||||
(pre /\ ~ assertOfExpr e)%assert post
|
||||
(wp instr2 post) post instr2
|
||||
(IHinstr2 post)).
|
||||
+ rewrite preRel. unfold assertImplLogical.
|
||||
intros mem. intros [ [disjunctIf disjunctElse] isElse].
|
||||
(pre0 /\ ~ assertOfExpr e)%assert post0
|
||||
preElse post0 instr2
|
||||
IHinstr2).
|
||||
+ rewrite pre0Rel. unfold assertImplLogical.
|
||||
intros mem [ [disjunctIf disjunctElse] isElse].
|
||||
apply (assertImplElim mem disjunctElse isElse).
|
||||
+ apply (assertImplSelf post).
|
||||
*
|
||||
+ apply (assertImplSelf post0).
|
||||
}
|
||||
|
||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||
rewrite preIfRel; trivial.
|
||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||
rewrite preIfRel; trivial.
|
||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||
rewrite preIfRel; trivial.
|
||||
* unfold wp; unfold provable_or_none; unfold whatever_or_none; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma provable_opt_implies_provable {pre instr post} :
|
||||
(|-opt [|Some pre|] instr [|Some post|])%assert
|
||||
-> (|- [|pre|] instr [|post|])%assert.
|
||||
Proof.
|
||||
intros prf.
|
||||
unfold provable_or_none in prf; unfold whatever_or_none in prf. assumption.
|
||||
Qed.
|
||||
|
||||
Theorem wp_correctness (instr: Instr) :
|
||||
forall post, ( |=opt [| wp instr post |] instr [| post |] ) % assert.
|
||||
Proof.
|
||||
intros post.
|
||||
destruct post as [post0 | ] eqn:post0Rel.
|
||||
remember (wp instr (Some post0)) as pre eqn:preRel.
|
||||
destruct pre as [ pre0 | ] eqn:pre0Rel.
|
||||
- unfold consequence_or_none; unfold whatever_or_none.
|
||||
apply hoare_provability_implies_consequence.
|
||||
apply provable_opt_implies_provable.
|
||||
rewrite preRel.
|
||||
apply wp_correctness_provable.
|
||||
- unfold consequence_or_none; unfold whatever_or_none; trivial.
|
||||
- unfold wp.
|
||||
destruct instr; unfold consequence_or_none; unfold
|
||||
whatever_or_none; trivial.
|
||||
Qed.
|
||||
|
||||
(* vim: ts=2 sw=2
|
||||
*)
|
||||
|
|
Loading…
Reference in a new issue