Finish proving wp_correctness
This commit is contained in:
parent
27389f132f
commit
c2c58119be
1 changed files with 135 additions and 47 deletions
182
wp.v
182
wp.v
|
@ -441,20 +441,30 @@ Qed.
|
||||||
|
|
||||||
(***** Weakest precondition **************************************************)
|
(***** Weakest precondition **************************************************)
|
||||||
|
|
||||||
Fixpoint wp (instr: Instr) (cond: Assert) : Assert := match instr with
|
Fixpoint wp (instr: Instr) (condOpt: option Assert) : option Assert :=
|
||||||
| skip =>
|
match condOpt with
|
||||||
cond
|
| None => None
|
||||||
|
| Some cond => match instr with
|
||||||
|
| skip =>
|
||||||
|
Some cond
|
||||||
| abort =>
|
| abort =>
|
||||||
assertTop
|
Some assertTop
|
||||||
| assign x expr =>
|
| assign x expr =>
|
||||||
cond [[ x <- expr expr ]]
|
Some (cond [[ x <- expr expr ]])
|
||||||
| seq s1 s2 =>
|
| seq s1 s2 =>
|
||||||
wp s1 (wp s2 cond)
|
wp s1 (wp s2 condOpt)
|
||||||
| ifelse guard sIf sElse =>
|
| ifelse guard sIf sElse =>
|
||||||
((assertOfExpr guard -> wp sIf cond)
|
match (wp sIf condOpt, wp sElse condOpt) with
|
||||||
/\ (~ (assertOfExpr guard) -> wp sElse cond)) % assert
|
| (None, _) | (_, None) => None
|
||||||
| while guard body => assertTop
|
| (Some wpIf, Some wpElse) =>
|
||||||
end.
|
Some (
|
||||||
|
((assertOfExpr guard -> wpIf)
|
||||||
|
/\ (~ (assertOfExpr guard) -> wpElse)) % assert)
|
||||||
|
end
|
||||||
|
| while guard body =>
|
||||||
|
None
|
||||||
|
end
|
||||||
|
end.
|
||||||
|
|
||||||
Lemma assertImplElim {a b: Assert} :
|
Lemma assertImplElim {a b: Assert} :
|
||||||
forall (m: Mem), (assertImpl a b) m -> a m -> b m.
|
forall (m: Mem), (assertImpl a b) m -> a m -> b m.
|
||||||
|
@ -472,42 +482,120 @@ Proof.
|
||||||
unfold assertImplLogical. intros mem x. assumption.
|
unfold assertImplLogical. intros mem x. assumption.
|
||||||
Qed.
|
Qed.
|
||||||
|
|
||||||
Theorem wp_correctness_provable (instr: Instr) :
|
Definition whatever_or_none (whatever: Assert -> Instr -> Assert -> Prop)
|
||||||
forall post, ( |- [| wp instr post |] instr [| post |] ) % assert.
|
(pre: option Assert) (instr: Instr) (post: option Assert) : Prop :=
|
||||||
|
match (pre, post) with
|
||||||
|
| (Some _, None) => False
|
||||||
|
| (None, _) => True
|
||||||
|
| (Some pre0, Some post0) => whatever pre0 instr post0
|
||||||
|
end.
|
||||||
|
|
||||||
|
Definition provable_or_none := whatever_or_none hoare_provability.
|
||||||
|
Notation "|-opt [| pre |] instr [| post |]" :=
|
||||||
|
(provable_or_none pre instr post) (at level 30) : assert.
|
||||||
|
|
||||||
|
Definition consequence_or_none := whatever_or_none hoare_consequence.
|
||||||
|
Notation "|=opt [| pre |] instr [| post |]" :=
|
||||||
|
(consequence_or_none pre instr post) (at level 30) : assert.
|
||||||
|
|
||||||
|
Lemma postnone_is_okay {instr post}:
|
||||||
|
(forall post0, (|-opt [|wp instr (Some post0)|] instr [|Some post0|])%assert)
|
||||||
|
-> (|-opt [|wp instr post|] instr [|post|])%assert.
|
||||||
Proof.
|
Proof.
|
||||||
induction instr; intros post; simpl.
|
intros prf. destruct post.
|
||||||
* apply (H_skip post).
|
- apply prf.
|
||||||
* apply (H_abort assertTop post).
|
- unfold provable_or_none; unfold whatever_or_none.
|
||||||
* apply (H_assign post v e).
|
unfold wp; destruct instr; trivial.
|
||||||
* remember (wp instr2 post) as mid eqn:midRel.
|
Qed.
|
||||||
|
|
||||||
|
Theorem wp_correctness_provable (instr: Instr) :
|
||||||
|
forall post, ( |-opt [| wp instr post |] instr [| post |] ) % assert.
|
||||||
|
Proof.
|
||||||
|
induction instr; intros post; apply postnone_is_okay; intros post0.
|
||||||
|
* apply (H_skip post0).
|
||||||
|
* apply (H_abort assertTop post0).
|
||||||
|
* apply (H_assign post0 v e).
|
||||||
|
* remember (wp instr2 (Some post0)) as mid eqn:midRel.
|
||||||
remember (wp instr1 mid) as pre eqn:preRel.
|
remember (wp instr1 mid) as pre eqn:preRel.
|
||||||
specialize IHinstr2 with post.
|
simpl; rewrite <- midRel; rewrite <- preRel.
|
||||||
specialize IHinstr1 with mid.
|
specialize IHinstr2 with (Some post0) as IHpost.
|
||||||
rewrite <- midRel in IHinstr2.
|
specialize IHinstr1 with mid as IHmid.
|
||||||
rewrite <- preRel in IHinstr1.
|
rewrite <- midRel in IHpost; rewrite <- preRel in IHmid.
|
||||||
apply (H_seq pre mid post instr1 instr2).
|
destruct mid as [mid0 | ] eqn:mid0Rel.
|
||||||
assumption. assumption.
|
destruct pre as [pre0 | ] eqn: pre0Rel.
|
||||||
* remember ((assertOfExpr e -> wp instr1 post)
|
apply (H_seq pre0 mid0 post0).
|
||||||
/\ (~ assertOfExpr e -> wp instr2 post)) % assert
|
apply IHmid. apply IHpost.
|
||||||
as pre eqn:preRel.
|
+ unfold whatever_or_none; trivial.
|
||||||
apply (H_if pre post e instr1 instr2).
|
+ destruct pre.
|
||||||
- apply (H_conseq
|
- unfold provable_or_none in IHmid; unfold whatever_or_none in IHmid.
|
||||||
(pre /\ assertOfExpr e)%assert post
|
exfalso. apply IHmid.
|
||||||
(wp instr1 post) post instr1
|
- unfold whatever_or_none; trivial.
|
||||||
(IHinstr1 post)).
|
* specialize IHinstr1 with (Some post0);
|
||||||
+ rewrite preRel. unfold assertImplLogical.
|
specialize IHinstr2 with (Some post0).
|
||||||
intros mem. intros [ [disjunctIf disjunctElse] isIf].
|
destruct (wp instr1 (Some post0)) as [preIf | ] eqn:preIfRel;
|
||||||
apply (assertImplElim mem disjunctIf isIf).
|
destruct (wp instr2 (Some post0)) as [preElse | ] eqn:preElseRel.
|
||||||
+ apply (assertImplSelf post).
|
remember ((assertOfExpr e -> preIf)
|
||||||
- apply (H_conseq
|
/\ (~ assertOfExpr e -> preElse)) % assert
|
||||||
(pre /\ ~ assertOfExpr e)%assert post
|
as pre0 eqn:pre0Rel.
|
||||||
(wp instr2 post) post instr2
|
assert (wp (ifelse e instr1 instr2) (Some post0) = (Some pre0)).
|
||||||
(IHinstr2 post)).
|
{
|
||||||
+ rewrite preRel. unfold assertImplLogical.
|
rewrite pre0Rel; simpl; rewrite preIfRel; rewrite preElseRel; congruence.
|
||||||
intros mem. intros [ [disjunctIf disjunctElse] isElse].
|
}
|
||||||
apply (assertImplElim mem disjunctElse isElse).
|
{
|
||||||
+ apply (assertImplSelf post).
|
rewrite H.
|
||||||
*
|
apply (H_if pre0 post0 e instr1 instr2).
|
||||||
|
- apply (H_conseq
|
||||||
|
(pre0 /\ assertOfExpr e)%assert post0
|
||||||
|
preIf post0 instr1
|
||||||
|
IHinstr1).
|
||||||
|
+ rewrite pre0Rel. unfold assertImplLogical.
|
||||||
|
intros mem [ [disjunctIf disjunctElse] isIf].
|
||||||
|
apply (assertImplElim mem disjunctIf isIf).
|
||||||
|
+ apply (assertImplSelf post0).
|
||||||
|
- apply (H_conseq
|
||||||
|
(pre0 /\ ~ assertOfExpr e)%assert post0
|
||||||
|
preElse post0 instr2
|
||||||
|
IHinstr2).
|
||||||
|
+ rewrite pre0Rel. unfold assertImplLogical.
|
||||||
|
intros mem [ [disjunctIf disjunctElse] isElse].
|
||||||
|
apply (assertImplElim mem disjunctElse isElse).
|
||||||
|
+ apply (assertImplSelf post0).
|
||||||
|
}
|
||||||
|
|
||||||
|
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||||
|
rewrite preIfRel; trivial.
|
||||||
|
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||||
|
rewrite preIfRel; trivial.
|
||||||
|
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||||
|
rewrite preIfRel; trivial.
|
||||||
|
* unfold wp; unfold provable_or_none; unfold whatever_or_none; trivial.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Lemma provable_opt_implies_provable {pre instr post} :
|
||||||
|
(|-opt [|Some pre|] instr [|Some post|])%assert
|
||||||
|
-> (|- [|pre|] instr [|post|])%assert.
|
||||||
|
Proof.
|
||||||
|
intros prf.
|
||||||
|
unfold provable_or_none in prf; unfold whatever_or_none in prf. assumption.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
Theorem wp_correctness (instr: Instr) :
|
||||||
|
forall post, ( |=opt [| wp instr post |] instr [| post |] ) % assert.
|
||||||
|
Proof.
|
||||||
|
intros post.
|
||||||
|
destruct post as [post0 | ] eqn:post0Rel.
|
||||||
|
remember (wp instr (Some post0)) as pre eqn:preRel.
|
||||||
|
destruct pre as [ pre0 | ] eqn:pre0Rel.
|
||||||
|
- unfold consequence_or_none; unfold whatever_or_none.
|
||||||
|
apply hoare_provability_implies_consequence.
|
||||||
|
apply provable_opt_implies_provable.
|
||||||
|
rewrite preRel.
|
||||||
|
apply wp_correctness_provable.
|
||||||
|
- unfold consequence_or_none; unfold whatever_or_none; trivial.
|
||||||
|
- unfold wp.
|
||||||
|
destruct instr; unfold consequence_or_none; unfold
|
||||||
|
whatever_or_none; trivial.
|
||||||
|
Qed.
|
||||||
|
|
||||||
(* vim: ts=2 sw=2
|
(* vim: ts=2 sw=2
|
||||||
*)
|
*)
|
||||||
|
|
Loading…
Reference in a new issue