Remove a few admitted points for certain_termination
This commit is contained in:
parent
3888b62c6a
commit
b9fcc3f5ee
1 changed files with 66 additions and 10 deletions
76
wp.v
76
wp.v
|
@ -76,6 +76,12 @@ Axiom find_lub_correct:
|
|||
is_chain chain -> is_lub_of chain (find_lub chain).
|
||||
Arguments find_lub_correct {T} {chain} _.
|
||||
|
||||
Axiom lub_is_first_correct:
|
||||
forall (T: Type), forall (n: nat), forall (chain: Sequence (cpo T)),
|
||||
is_chain chain
|
||||
-> chain n = CpoError T
|
||||
-> chain (S n) <> CpoError T
|
||||
-> find_lub chain = chain (S n).
|
||||
(***** Interpretation ********************************************************)
|
||||
|
||||
Definition subst: Mem -> Var -> Z -> Mem :=
|
||||
|
@ -160,6 +166,55 @@ Proof.
|
|||
intros not_error.
|
||||
Admitted.
|
||||
|
||||
Lemma unfold_one_iter (s: Instr) (m: Mem) (n: nat):
|
||||
interp (nth_iterate s (S n)) (MemElem m)
|
||||
= interp s (interp (nth_iterate s n) (MemElem m)).
|
||||
Proof.
|
||||
simpl; congruence.
|
||||
Qed.
|
||||
|
||||
Lemma bool_prop_contradict {x: Z}:
|
||||
(x <> 0)%Z -> (x =? 0)%Z = true -> False.
|
||||
Proof.
|
||||
intros diff equ. apply diff.
|
||||
unfold eqb in equ; destruct x; simpl; trivial;
|
||||
exfalso; apply (Bool.Bool.diff_false_true); assumption.
|
||||
Qed.
|
||||
|
||||
Lemma before_n_useless_guard {body guard n mem}:
|
||||
(forall p, p < n
|
||||
-> (interp (nth_iterate (ifonly guard body) p) mem) |=e guard)
|
||||
-> forall p, p <= n ->
|
||||
(interp (nth_iterate body p) mem)
|
||||
= (interp (nth_iterate (ifonly guard body) p) mem).
|
||||
Proof.
|
||||
intros matchGuard p infN.
|
||||
induction p.
|
||||
- unfold nth_iterate; trivial.
|
||||
- assert (p < n). omega. assert (p <= n). omega.
|
||||
apply IHp in H0 as IHp0.
|
||||
destruct mem eqn:mRel; [simpl; trivial | ].
|
||||
fold MemElem; rewrite (unfold_one_iter body m p);
|
||||
rewrite (unfold_one_iter (ifonly guard body) m p).
|
||||
fold MemElem in IHp0; rewrite IHp0.
|
||||
remember (interp (nth_iterate body p) (MemElem m))
|
||||
as stepMem eqn:stepMemRel.
|
||||
remember (interp (nth_iterate (ifonly guard body) p) (MemElem m))
|
||||
as fancyStepMem eqn:fancyStepMemRel.
|
||||
specialize matchGuard with p.
|
||||
apply matchGuard in H as matchGuardP.
|
||||
fold MemElem in matchGuardP.
|
||||
rewrite <- fancyStepMemRel in matchGuardP.
|
||||
rewrite <- IHp0 in matchGuardP.
|
||||
destruct fancyStepMem.
|
||||
* destruct body; simpl; trivial.
|
||||
* unfold satisfies_expr in matchGuardP.
|
||||
destruct (guard m0 =? 0)%Z eqn:guardRel.
|
||||
+ rewrite IHp0 in matchGuardP.
|
||||
exfalso; apply (bool_prop_contradict matchGuardP guardRel).
|
||||
+ unfold ifonly; simpl; rewrite guardRel; congruence.
|
||||
Qed.
|
||||
|
||||
Lemma certain_termination assert body guard mem :
|
||||
interp (while assert guard body) mem <> MemError ->
|
||||
exists n: nat,
|
||||
|
@ -168,9 +223,17 @@ Lemma certain_termination assert body guard mem :
|
|||
/\ interp (while assert guard body) mem = interp (nth_iterate body n) mem.
|
||||
Proof.
|
||||
intros notError.
|
||||
elim (certain_termination_exists_minimal assert body guard mem).
|
||||
intros n. intros [notBeforeN atN]. exists n.
|
||||
split.
|
||||
destruct (certain_termination_exists_minimal assert body guard mem) as [n];
|
||||
trivial.
|
||||
destruct H as [beforeN atN].
|
||||
exists n.
|
||||
split; [|split].
|
||||
- assert (n <= n). omega. rewrite (before_n_useless_guard beforeN n H).
|
||||
assumption.
|
||||
- intros p infN. assert (p <= n). omega.
|
||||
rewrite (before_n_useless_guard beforeN p H ).
|
||||
apply beforeN; trivial.
|
||||
- admit.
|
||||
Admitted.
|
||||
|
||||
(***** Validite, prouvabilite pour Hoare *************************************)
|
||||
|
@ -297,13 +360,6 @@ Proof.
|
|||
intros src; unfold conseq_or_bottom; simpl; trivial.
|
||||
Qed.
|
||||
|
||||
Lemma unfold_one_iter (s: Instr) (m: Mem) (n: nat):
|
||||
interp (nth_iterate s (S n)) (MemElem m)
|
||||
= interp s (interp (nth_iterate s n) (MemElem m)).
|
||||
Proof.
|
||||
simpl; congruence.
|
||||
Qed.
|
||||
|
||||
Lemma error_leads_to_no_success s:
|
||||
forall m, interp s MemError <> MemElem m.
|
||||
Proof.
|
||||
|
|
Loading…
Reference in a new issue