Prove Th2.3 up to consequence

This commit is contained in:
Théophile Bastian 2017-12-05 16:15:40 +01:00
parent 06f655c1c1
commit 93336c705e

30
wp.v
View file

@ -157,8 +157,8 @@ Notation "a [[ x <- 'expr' z ]]" := (substAssertExpr a x z)
Definition assertOfExpr : Expr -> Assert := Definition assertOfExpr : Expr -> Assert :=
fun expr mem => expr mem <> 0%Z. fun expr mem => expr mem <> 0%Z.
Definition assertImplLogical : Assert -> Assert -> Prop := Definition assertImplLogical (a1 a2: Assert): Prop :=
fun a1 a2 => forall (m : Mem), (a1 m) -> (a2 m). forall (m: Mem), (a1 m) -> (a2 m).
(***** Hoare provability *****************************************************) (***** Hoare provability *****************************************************)
@ -212,10 +212,32 @@ Definition hoare_consequence (pre: Assert) (instr: Instr) (post: Assert) :=
Notation "|= [| pre |] instr [| post |]" := Notation "|= [| pre |] instr [| post |]" :=
(hoare_consequence pre instr post) (at level 30): assert. (hoare_consequence pre instr post) (at level 30): assert.
Lemma weaken_in_conseq:
forall a1, forall a2, forall m,
assertImplLogical a1 a2 -> conseq_or_bottom a1 m ->
conseq_or_bottom a2 m.
Proof.
intros a1 a2 m impl conseq. destruct m.
- apply conseq.
- simpl. unfold assertImplLogical in impl. apply (impl m). apply conseq.
Qed.
Theorem hoare_provability_implies_consequence : Theorem hoare_provability_implies_consequence :
forall (pre: Assert), forall (s: Instr), forall (post: Assert), forall (pre: Assert), forall (s: Instr), forall (post: Assert),
( |- [| pre |] s [| post |] ) % assert ( |- [| pre |] s [| post |] ) % assert
-> ( |= [| pre |] s [| post |] ) % assert. -> ( |= [| pre |] s [| post |] ) % assert.
Proof. Proof.
(* TODO *) intros pre instr post. intros deduction.
Admitted. induction deduction; intros mem preInMem; simpl.
- exact preInMem.
- trivial.
- exact preInMem.
- apply (weaken_in_conseq post' post (interp s (MemElem mem)) H0).
apply IHdeduction. apply H. exact preInMem.
- destruct (interp s1 (MemElem mem)) eqn:mRel.
admit.
apply (IHdeduction2 m). unfold hoare_consequence in IHdeduction1.
specialize IHdeduction1 with mem as IH1_mem.
rewrite mRel in IH1_mem. apply IH1_mem. assumption.
-