Prove Th2.3 up to consequence
This commit is contained in:
parent
06f655c1c1
commit
93336c705e
1 changed files with 26 additions and 4 deletions
30
wp.v
30
wp.v
|
@ -157,8 +157,8 @@ Notation "a [[ x <- 'expr' z ]]" := (substAssertExpr a x z)
|
||||||
Definition assertOfExpr : Expr -> Assert :=
|
Definition assertOfExpr : Expr -> Assert :=
|
||||||
fun expr mem => expr mem <> 0%Z.
|
fun expr mem => expr mem <> 0%Z.
|
||||||
|
|
||||||
Definition assertImplLogical : Assert -> Assert -> Prop :=
|
Definition assertImplLogical (a1 a2: Assert): Prop :=
|
||||||
fun a1 a2 => forall (m : Mem), (a1 m) -> (a2 m).
|
forall (m: Mem), (a1 m) -> (a2 m).
|
||||||
|
|
||||||
|
|
||||||
(***** Hoare provability *****************************************************)
|
(***** Hoare provability *****************************************************)
|
||||||
|
@ -212,10 +212,32 @@ Definition hoare_consequence (pre: Assert) (instr: Instr) (post: Assert) :=
|
||||||
Notation "|= [| pre |] instr [| post |]" :=
|
Notation "|= [| pre |] instr [| post |]" :=
|
||||||
(hoare_consequence pre instr post) (at level 30): assert.
|
(hoare_consequence pre instr post) (at level 30): assert.
|
||||||
|
|
||||||
|
Lemma weaken_in_conseq:
|
||||||
|
forall a1, forall a2, forall m,
|
||||||
|
assertImplLogical a1 a2 -> conseq_or_bottom a1 m ->
|
||||||
|
conseq_or_bottom a2 m.
|
||||||
|
Proof.
|
||||||
|
intros a1 a2 m impl conseq. destruct m.
|
||||||
|
- apply conseq.
|
||||||
|
- simpl. unfold assertImplLogical in impl. apply (impl m). apply conseq.
|
||||||
|
Qed.
|
||||||
|
|
||||||
|
|
||||||
Theorem hoare_provability_implies_consequence :
|
Theorem hoare_provability_implies_consequence :
|
||||||
forall (pre: Assert), forall (s: Instr), forall (post: Assert),
|
forall (pre: Assert), forall (s: Instr), forall (post: Assert),
|
||||||
( |- [| pre |] s [| post |] ) % assert
|
( |- [| pre |] s [| post |] ) % assert
|
||||||
-> ( |= [| pre |] s [| post |] ) % assert.
|
-> ( |= [| pre |] s [| post |] ) % assert.
|
||||||
Proof.
|
Proof.
|
||||||
(* TODO *)
|
intros pre instr post. intros deduction.
|
||||||
Admitted.
|
induction deduction; intros mem preInMem; simpl.
|
||||||
|
- exact preInMem.
|
||||||
|
- trivial.
|
||||||
|
- exact preInMem.
|
||||||
|
- apply (weaken_in_conseq post' post (interp s (MemElem mem)) H0).
|
||||||
|
apply IHdeduction. apply H. exact preInMem.
|
||||||
|
- destruct (interp s1 (MemElem mem)) eqn:mRel.
|
||||||
|
admit.
|
||||||
|
apply (IHdeduction2 m). unfold hoare_consequence in IHdeduction1.
|
||||||
|
specialize IHdeduction1 with mem as IH1_mem.
|
||||||
|
rewrite mRel in IH1_mem. apply IH1_mem. assumption.
|
||||||
|
-
|
||||||
|
|
Loading…
Reference in a new issue