Prove 2.3 assuming 1.6

This commit is contained in:
Théophile Bastian 2017-12-06 20:02:17 +01:00
parent 3ed5ef8ea4
commit 5dfc412c10

96
wp.v
View file

@ -3,6 +3,7 @@
(***** Partie 1 : definition de While ****************************************)
Require Import ZArith.BinInt.
Require Import Omega.
Import Z.
Definition Var := nat.
@ -297,6 +298,20 @@ Proof.
unfold MemElem; unfold MemError; congruence.
Qed.
Lemma expr_neg_consistency (expr: Expr):
forall mem, expr_neg expr mem <> 0%Z -> (~ assertOfExpr expr)%assert mem.
Proof.
intros mem. intros src.
unfold assertNot. unfold assertOfExpr. destruct (expr mem) eqn:exprRel.
+ congruence.
+ elimtype False.
unfold expr_neg in src; rewrite exprRel in src. apply src.
congruence.
+ elimtype False.
unfold expr_neg in src; rewrite exprRel in src. apply src.
congruence.
Qed.
Lemma Sn_noerror_n_noerror (n: nat) (s: Instr) (sMem: Mem) (m: Mem):
interp (nth_iterate s (S n)) (MemElem sMem) = MemElem m
-> exists m0, interp (nth_iterate s n) (MemElem sMem) = MemElem m0
@ -312,6 +327,42 @@ Proof.
* rewrite <- nRel; simpl. apply HSn.
Qed.
Lemma greater_n_noerror (n1 n2: nat) (s: Instr) (sMem: Mem) (m: Mem):
n1 < n2
-> interp (nth_iterate s n2) (MemElem sMem) = MemElem m
-> exists m0, interp (nth_iterate s n1) (MemElem sMem) = MemElem m0.
Proof.
intros nRel eventuallySound.
assert (forall nDecr, nDecr <= n2 - n1 ->
exists m0,
interp (nth_iterate s (n2 - nDecr)) (MemElem sMem) = MemElem m0).
* intros mDecr mDecrRel. induction mDecr.
+ exists m.
assert (n2 = n2 - 0).
{ unfold Nat.sub. destruct n2; trivial. }
{ rewrite <- H. assumption. }
+ assert (mDecr <= n2 - n1).
{ omega. }
{ elim (IHmDecr H). intros memNext memNextRel.
elim (Sn_noerror_n_noerror (n2 - (S mDecr)) s sMem memNext).
intros memNow [memNowRel memNowInterp].
exists memNow. apply memNowRel.
assert (S (n2 - S mDecr) = n2 - mDecr). omega.
rewrite H0. apply memNextRel.
}
* assert (n2 - n1 <= n2 - n1). omega. elim (H (n2 - n1) H0).
intros memRes memResRel. exists memRes.
assert (n2 - (n2 - n1) = n1). omega. rewrite H1 in memResRel.
assumption.
Qed.
Lemma unwrap_CpoElem (T: Type) :
forall m1 m2, CpoElem T m1 = CpoElem T m2 -> m1 = m2.
Proof.
intros m1 m2 cpoEq. congruence.
Qed.
Theorem hoare_provability_implies_consequence :
forall (pre: Assert), forall (s: Instr), forall (post: Assert),
( |- [| pre |] s [| post |] ) % assert
@ -342,36 +393,51 @@ Proof.
destruct (interp (while expr sBody) (MemElem mem)) eqn:interpRel.
* trivial.
* elim (certain_termination sBody expr (MemElem mem)).
intros n. intros [lastIter [notLastIter isWhile] ].
intros n [lastIter [notLastIter isWhile] ].
rewrite isWhile in interpRel.
split.
+
apply conseq_or_bottom_is_conseq. unfold MemElem.
destruct n.
{ simpl in lastIter. simpl in interpRel; unfold MemElem in interpRel.
unfold assertAnd. apply (unwrap_CpoElem Mem) in interpRel. split.
{ rewrite interpRel in preInMem; assumption. }
{ apply expr_neg_consistency; rewrite <- interpRel; assumption. }
}
unfold assertAnd; split.
+ apply conseq_or_bottom_is_conseq. unfold MemElem.
rewrite <- interpRel.
induction n; simpl.
{ assumption. }
{ elim (Sn_noerror_n_noerror n sBody mem m interpRel).
intros memN [relMemN stepMemN].
assert (forall n1, n1 <= (S n) ->
conseq_or_bottom inv
(interp (nth_iterate sBody n1) (MemElem mem))).
{ induction n1.
{ intros obvious. simpl. assumption. }
{ intros order; simpl.
unfold hoare_consequence in IHdeduction.
assert (n1 < S n) as nOrder. omega.
elim (greater_n_noerror n1 (S n) sBody mem m nOrder interpRel).
intros memN relMemN.
specialize (IHdeduction memN) as IHmem.
rewrite stepMemN in IHmem.
rewrite relMemN.
rewrite relMemN in IHn.
rewrite stepMemN.
apply IHmem.
unfold assertAnd; split.
{ admit. }
{ rewrite relMemN in IHn1; unfold MemElem in IHn1.
apply IHn1. omega.
}
{ unfold assertOfExpr.
specialize (notLastIter n).
specialize (notLastIter n1).
rewrite relMemN in notLastIter.
unfold satisfies_expr in notLastIter; simpl in notLastIter.
apply notLastIter. unfold Peano.lt. trivial. }
apply notLastIter. assumption.
}
}
}
{
apply H. omega.
}
+ unfold assertNot; unfold assertOfExpr. rewrite interpRel in lastIter.
unfold satisfies_expr in lastIter.
unfold expr_neg in lastIter.
destruct (expr m); simpl; congruence.
+ rewrite interpRel; unfold MemError; congruence.
Admitted.
Qed.
(***** Weakest precondition **************************************************)