Progress towards proved wp with option Assert
This commit is contained in:
parent
c2c58119be
commit
260ac05c6e
1 changed files with 28 additions and 56 deletions
80
wp.v
80
wp.v
|
@ -441,29 +441,15 @@ Qed.
|
|||
|
||||
(***** Weakest precondition **************************************************)
|
||||
|
||||
Fixpoint wp (instr: Instr) (condOpt: option Assert) : option Assert :=
|
||||
match condOpt with
|
||||
| None => None
|
||||
| Some cond => match instr with
|
||||
| skip =>
|
||||
Some cond
|
||||
| abort =>
|
||||
Some assertTop
|
||||
| assign x expr =>
|
||||
Some (cond [[ x <- expr expr ]])
|
||||
| seq s1 s2 =>
|
||||
wp s1 (wp s2 condOpt)
|
||||
Fixpoint wp (instr: Instr) (cond: Assert) : Assert := match instr with
|
||||
| skip => cond
|
||||
| abort => assertTop
|
||||
| assign x expr => (cond [[ x <- expr expr ]])
|
||||
| seq s1 s2 => wp s1 (wp s2 cond)
|
||||
| ifelse guard sIf sElse =>
|
||||
match (wp sIf condOpt, wp sElse condOpt) with
|
||||
| (None, _) | (_, None) => None
|
||||
| (Some wpIf, Some wpElse) =>
|
||||
Some (
|
||||
((assertOfExpr guard -> wpIf)
|
||||
/\ (~ (assertOfExpr guard) -> wpElse)) % assert)
|
||||
end
|
||||
| while guard body =>
|
||||
None
|
||||
end
|
||||
((assertOfExpr guard -> wp sIf cond)
|
||||
/\ (~ (assertOfExpr guard) -> wp sElse cond)) % assert
|
||||
| while guard body => assertBot
|
||||
end.
|
||||
|
||||
Lemma assertImplElim {a b: Assert} :
|
||||
|
@ -482,40 +468,25 @@ Proof.
|
|||
unfold assertImplLogical. intros mem x. assumption.
|
||||
Qed.
|
||||
|
||||
Definition whatever_or_none (whatever: Assert -> Instr -> Assert -> Prop)
|
||||
(pre: option Assert) (instr: Instr) (post: option Assert) : Prop :=
|
||||
match (pre, post) with
|
||||
| (Some _, None) => False
|
||||
| (None, _) => True
|
||||
| (Some pre0, Some post0) => whatever pre0 instr post0
|
||||
end.
|
||||
|
||||
Definition provable_or_none := whatever_or_none hoare_provability.
|
||||
Notation "|-opt [| pre |] instr [| post |]" :=
|
||||
(provable_or_none pre instr post) (at level 30) : assert.
|
||||
|
||||
Definition consequence_or_none := whatever_or_none hoare_consequence.
|
||||
Notation "|=opt [| pre |] instr [| post |]" :=
|
||||
(consequence_or_none pre instr post) (at level 30) : assert.
|
||||
|
||||
Lemma postnone_is_okay {instr post}:
|
||||
(forall post0, (|-opt [|wp instr (Some post0)|] instr [|Some post0|])%assert)
|
||||
-> (|-opt [|wp instr post|] instr [|post|])%assert.
|
||||
Lemma preBottomIsCorrect {instr post}:
|
||||
(|= [|assertBot|] instr [|post|]) % assert.
|
||||
Proof.
|
||||
intros prf. destruct post.
|
||||
- apply prf.
|
||||
- unfold provable_or_none; unfold whatever_or_none.
|
||||
unfold wp; destruct instr; trivial.
|
||||
unfold hoare_consequence. intros mem.
|
||||
unfold assertBot.
|
||||
intros F; exfalso; exact F.
|
||||
Qed.
|
||||
|
||||
Theorem wp_correctness_provable (instr: Instr) :
|
||||
forall post, ( |-opt [| wp instr post |] instr [| post |] ) % assert.
|
||||
Theorem wp_correctness (instr: Instr):
|
||||
forall post, ( |= [| wp instr post |] instr [| post |] ) % assert.
|
||||
Proof.
|
||||
induction instr; intros post; apply postnone_is_okay; intros post0.
|
||||
* apply (H_skip post0).
|
||||
* apply (H_abort assertTop post0).
|
||||
* apply (H_assign post0 v e).
|
||||
* remember (wp instr2 (Some post0)) as mid eqn:midRel.
|
||||
induction instr; intros post.
|
||||
* apply hoare_provability_implies_consequence.
|
||||
apply (H_skip post).
|
||||
* apply hoare_provability_implies_consequence.
|
||||
apply (H_abort assertTop post).
|
||||
* apply hoare_provability_implies_consequence. apply (H_assign post v e).
|
||||
* apply hoare_provability_implies_consequence.
|
||||
remember (wp instr2 (Some post)) as mid eqn:midRel.
|
||||
remember (wp instr1 mid) as pre eqn:preRel.
|
||||
simpl; rewrite <- midRel; rewrite <- preRel.
|
||||
specialize IHinstr2 with (Some post0) as IHpost.
|
||||
|
@ -530,7 +501,8 @@ Proof.
|
|||
- unfold provable_or_none in IHmid; unfold whatever_or_none in IHmid.
|
||||
exfalso. apply IHmid.
|
||||
- unfold whatever_or_none; trivial.
|
||||
* specialize IHinstr1 with (Some post0);
|
||||
* apply hoare_provability_implies_consequence.
|
||||
specialize IHinstr1 with (Some post0);
|
||||
specialize IHinstr2 with (Some post0).
|
||||
destruct (wp instr1 (Some post0)) as [preIf | ] eqn:preIfRel;
|
||||
destruct (wp instr2 (Some post0)) as [preElse | ] eqn:preElseRel.
|
||||
|
@ -568,7 +540,7 @@ Proof.
|
|||
rewrite preIfRel; trivial.
|
||||
- unfold provable_or_none; simpl; rewrite preElseRel;
|
||||
rewrite preIfRel; trivial.
|
||||
* unfold wp; unfold provable_or_none; unfold whatever_or_none; trivial.
|
||||
* unfold wp. apply preBottomIsCorrect.
|
||||
Qed.
|
||||
|
||||
Lemma provable_opt_implies_provable {pre instr post} :
|
||||
|
|
Loading…
Reference in a new issue