Compare commits
No commits in common. "testing" and "master" have entirely different histories.
13 changed files with 97 additions and 739 deletions
|
@ -34,7 +34,7 @@
|
|||
}
|
||||
|
||||
@article{abramsky2000pcf,
|
||||
title={{Full abstraction for PCF}},
|
||||
title={Full abstraction for PCF},
|
||||
author={Abramsky, Samson and Jagadeesan, Radha and Malacaria, Pasquale},
|
||||
journal={Information and Computation},
|
||||
volume={163},
|
||||
|
@ -82,7 +82,7 @@
|
|||
}
|
||||
|
||||
@article{laird2001game,
|
||||
title={{A game semantics of Idealized CSP}},
|
||||
title={A game semantics of Idealized CSP},
|
||||
author={Laird, James},
|
||||
journal={Electronic Notes in Theoretical Computer Science},
|
||||
volume={45},
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
\usepackage{hyperref}
|
||||
\usepackage{xcolor}
|
||||
\usepackage[dvipsnames]{xcolor}
|
||||
|
||||
\definecolor{link_blue}{RGB}{0,0,97}
|
||||
\definecolor{cite_green}{HTML}{009B55}
|
||||
|
||||
\hypersetup{
|
||||
% bookmarks=true, % show bookmarks bar?
|
||||
|
@ -20,7 +19,7 @@
|
|||
% pdfnewwindow=true, % links in new PDF window
|
||||
colorlinks=true, % false: boxed links; true: colored links
|
||||
linkcolor=link_blue, % color of internal links (change box color with linkbordercolor)
|
||||
citecolor=cite_green, % color of links to bibliography
|
||||
citecolor=ForestGreen, % color of links to bibliography
|
||||
filecolor=magenta, % color of file links
|
||||
urlcolor=link_blue % color of external links
|
||||
}
|
||||
|
|
|
@ -83,13 +83,14 @@ the two strategies.
|
|||
|
||||
\paragraph{Concurrency in game semantics.} In the continuity of the efforts put
|
||||
forward to model imperative primitives in game semantics, it was natural to
|
||||
focus at some point on modelling concurrency. The problem was first tackled by
|
||||
focus at some point on modelling concurrency. The problem was tackled by
|
||||
\fname{Laird}~\cite{laird2001game}, introducing game semantics for a \lcalc{}
|
||||
with a few additions, as well as a \emph{parallel execution} operator and
|
||||
communication on channels. \fname{Ghica} and \fname{Murawski} then simplified
|
||||
\textsc{Laird}'s approach, and gave a fully abstract model for a slightly more
|
||||
realistic concurrent programming language with shared memory
|
||||
in~\cite{ghica2004angelic}.
|
||||
communication on channels. It is often considered, though, that \fname{Ghica}
|
||||
and \fname{Murawski}~\cite{ghica2004angelic} really took the fundamental step
|
||||
by defining game semantics for a fine-grained concurrent language including
|
||||
parallel execution of ``threads'' and low-level semaphores --- a way more
|
||||
realistic approach to the problem.
|
||||
|
||||
However, both of these constructions are based on \emph{interleavings}. That
|
||||
is, they model programs on \emph{tree-like games}, games in which the moves
|
||||
|
@ -104,15 +105,15 @@ combination of moves is a valid path.
|
|||
|
||||
However, this approach introduces non-determinism in the strategies: if two
|
||||
moves are available to a player, the model states that they make a
|
||||
non-deterministic uniform choice. Yet, even for concurrent programs it is
|
||||
often a desirable property that they should behave consistently with the
|
||||
environment, meaning that they are deterministic up to the choice of the
|
||||
scheduler. Such determinism can be ensured statically, via typing. This idea
|
||||
was explored outside of the game semantics context, for instance
|
||||
by~\cite{reynolds1978syntactic}, establishing a type-checking system to
|
||||
restrict concurrent programs to deterministic ones. Some recent work makes use
|
||||
of linear logic~\cite{caires2010session} for similar purposes as well. Yet,
|
||||
the interleavings game semantics of these languages remains non-deterministic.
|
||||
non-deterministic uniform choice. Yet, one could reasonably argue that a
|
||||
program should behave consistently with the environment, which would mean that
|
||||
the semantics of a program --- even a concurrent one --- should still be
|
||||
deterministic. This idea was explored outside of the game semantics context,
|
||||
for instance by~\cite{reynolds1978syntactic}, establishing a type-checking
|
||||
system to restrict concurrent programs to deterministic ones. Some recent work
|
||||
makes use of linear logic~\cite{caires2010session} for similar purposes as
|
||||
well. Yet, the interleavings game semantics of these languages remains
|
||||
non-deterministic.
|
||||
|
||||
\paragraph{The purpose of this internship} was to try to take a first step
|
||||
towards the reunification of those two developments. For that purpose, my
|
||||
|
@ -141,7 +142,7 @@ synchronization of processes through \emph{channels} ---, lifted up to the
|
|||
higher order through a \lcalc. The language was then restricted to a
|
||||
\emph{linear} one --- that is, each identifier declared must be referred to
|
||||
exactly once ---, partly to keep the model simple, partly to meet the
|
||||
determinism requirements through the banning of interference.
|
||||
determinism requirements.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{A linear variant of CCS~: \linccs}
|
||||
|
@ -230,7 +231,7 @@ where $a$ denotes a channel and $x$ denotes any possible label.
|
|||
\frac{P \redarrow{x} P'}
|
||||
{P \cdot Q \redarrow{x} P' \cdot Q} & &
|
||||
\frac{P \redarrow{x} P'}
|
||||
{(\nu a)P \redarrow{x} (\nu a)P'} & (x \not\in \set{a,\tau_a})
|
||||
{(\nu a)P \redarrow{x} (\nu a)P'} & (a \not\in \set{x,\tau_a})
|
||||
\end{align*}
|
||||
\caption{\linccs{} operational semantics}\label{fig:lccs:opsem}
|
||||
\end{figure}
|
||||
|
@ -244,7 +245,11 @@ necessary. Consider the reduction of $(\nu a) (a \cdot 1 \parallel \bar{a}
|
|||
to reduce to $1$; but if we replaced that $\tau_a$ with a $\tau$, the whole
|
||||
term would reduce to $(\nu a) 1$, which has no valid type since $a$ and
|
||||
$\bar{a}$ are not consumed (linearity). Our semantics would then not satisfy
|
||||
subject reduction for $\tau$-reductions.
|
||||
subject reduction.
|
||||
|
||||
Switching to an \emph{affine} \linccs{} while keeping it wrapped in a
|
||||
\emph{linear} \lcalc{} was considered, but yielded way too many problems, while
|
||||
switching to a fully-affine model would have modified the problem too deeply.
|
||||
|
||||
\subsection{Lifting to the higher order: linear \lcalc}
|
||||
|
||||
|
@ -252,7 +257,7 @@ In order to reach the studied language, \llccs, we have to lift up \linccs{} to
|
|||
a \lcalc. To do so, we add to the language the constructions of
|
||||
figure~\ref{fig:llam:syntax}, which are basically the usual \lcalc{}
|
||||
constructions slightly transformed to be linear (which is mostly reflected by
|
||||
the typing rules).
|
||||
the typing rules). In particular, the only base types are $\proc$ and $\chan$.
|
||||
|
||||
\begin{figure}[h]
|
||||
\begin{minipage}[t]{0.55\textwidth}
|
||||
|
@ -333,17 +338,15 @@ To lift the operational semantics to \llccs, we only need to add one rule:
|
|||
\left(\left(\left(\bar{f} \cdot 1\right) \cdot
|
||||
\left(\bar{g} \cdot 1\right)\right) \parallel \left(g \cdot 1\right)
|
||||
\right)\right)$. Note that the function has no idea whether two
|
||||
channels are dual or not, that is, its declaration ignores duality
|
||||
relations between its parameters. In practice, it means that no
|
||||
synchronization can happen before the term is $\beta$-reduced.
|
||||
channels are dual or not.
|
||||
\end{itemize}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{A games model}
|
||||
|
||||
Our goal is now to give a deterministic games model for the above language. For
|
||||
that purpose, we will use \emph{event structures}, providing an alternative
|
||||
formalism to the often-used tree-like games.
|
||||
Our goal is now to give a games model for the above language. For that purpose,
|
||||
we will use \emph{event structures}, providing an alternative formalism to
|
||||
the often-used tree-like games.
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{The event structures framework}
|
||||
|
@ -368,9 +371,9 @@ corresponds to the game tree
|
|||
\]
|
||||
|
||||
This can of course be used to describe much larger games, and is often useful
|
||||
to reason concurrently. The different configurations of the game that can be
|
||||
reached are quite easily read: one only has to concatenate the events found
|
||||
along path starting at the root of the tree.
|
||||
to reason concurrently, since the causal histories appears clearly: the
|
||||
possible states of the game can be read easily by concatenating the events
|
||||
found along a path from the root of the tree.
|
||||
|
||||
But it also has the major drawback of growing exponentially in size: let us
|
||||
consider a game in which Opponent must play $A$ and $B$ in no particular order
|
||||
|
@ -392,14 +395,10 @@ before Player can play $C$. The corresponding tree-like game would be
|
|||
\end{tikzpicture}
|
||||
\]
|
||||
|
||||
This goes even worse with less structure: since there are $n!$ % chktex 40
|
||||
This goes even worse with less structure: since there is $n!$ % chktex 40
|
||||
permutations for $n$ elements, the tree can grow way larger.
|
||||
|
||||
The previous example also points out a kind of \textit{obfuscation} of the
|
||||
causal histories: reading the diagram above does not make it obvious to the
|
||||
reader that $A$ and $B$ must be played before $C$.
|
||||
|
||||
This problem can be solved by using \emph{event structures} as a formalism to
|
||||
This problem motivated the use of \emph{event structures} as a formalism to
|
||||
describe such games~\cite{rideau2011concurrent}. Informally, an event structure
|
||||
is a partial order $\leq$ on \emph{events} (here, the game's moves), alongside
|
||||
with a \emph{consistency} relation.
|
||||
|
@ -434,9 +433,7 @@ look like
|
|||
\leq_E e}$ is finite.
|
||||
|
||||
The partial order $\leq_E$ naturally induces a binary relation $\edgeArrow$
|
||||
over $E$ that is defined as the transitive reduction of $\leq_E$, \ie{} the
|
||||
minimal subset of $\leq_E$ such that the transitive closures of $\leq_E$
|
||||
and $\edgeArrow$ are the same.
|
||||
over $E$ that is defined as the transitive reduction of $\leq_E$.
|
||||
\end{definition}
|
||||
|
||||
In this context, the right intuition of event structures is a set of events
|
||||
|
@ -445,7 +442,7 @@ a given move cannot occur before another move.
|
|||
|
||||
Event structures are often represented as a directed acyclic graph (DAG)
|
||||
where the vertices are the elements of $E$ and the edges are the transitive
|
||||
reduction of $\leq_E$ (\ie{} $\edgeArrow_E$).
|
||||
reduction of $\leq_E$.
|
||||
|
||||
\begin{definition}[event structure with polarities]
|
||||
An \emph{event structure with polarities} (\textit{ESP}) is an event
|
||||
|
@ -488,9 +485,8 @@ strategies.
|
|||
\begin{notation}
|
||||
For $x,y \in \config(A)$, $x \forkover{e} y$ states that $y =
|
||||
x \sqcup \set{e}$ (and that both are valid configurations), where $\sqcup$
|
||||
is used to mean that the standard union ($\cup$) is disjoint. It is also
|
||||
possible to write $x \forkover{e}$, stating that $x \sqcup \set{e} \in
|
||||
\config(A)$, or $x \fork y$.
|
||||
denotes the disjoint union. It is also possible to write $x \forkover{e}$,
|
||||
stating that $x \sqcup \set{e} \in \config(A)$, or $x \fork y$.
|
||||
\end{notation}
|
||||
|
||||
%%%%%
|
||||
|
@ -538,7 +534,7 @@ drink.
|
|||
\]
|
||||
The ``call'' event will be triggered by Opponent (the system) when the
|
||||
process is started, and Player will play ``done'' when the process has
|
||||
finished, if it ever does. The relation $\texttt{call} \leq \texttt{done}$
|
||||
finished, if it ever does. The relation $\text{call} \leq \text{done}$
|
||||
means that a process cannot finish \emph{before} it is called: unlike what
|
||||
happened in the previous example, it is here a ``hardwired'' relation that
|
||||
the software cannot bypass.
|
||||
|
@ -548,8 +544,7 @@ drink.
|
|||
A \emph{pre-strategy} on the game $A$, written $\sigma: A$, is an ESP such
|
||||
that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $\sigma \subseteq A$ (inclusion over set of events, not including
|
||||
the order);
|
||||
\item $\sigma \subseteq A$;
|
||||
\item $\config(\sigma) \subseteq \config(A)$;
|
||||
\item $\forall s \in \sigma, \rho_A(s) = \rho_\sigma(s)$
|
||||
\end{enumerate}
|
||||
|
@ -605,26 +600,23 @@ int main() {
|
|||
|
||||
But as it is defined, a pre-strategy does not exactly capture what we expect of
|
||||
a \emph{strategy}: it is too expressive. For instance, the relation
|
||||
$\text{call}_0 \leq \text{call}_1$ on a variant of the above strategy would be
|
||||
allowed, stating that the operating system cannot decide to start the process
|
||||
$1$ before the process $0$. It is not up to the program to decide that, this
|
||||
strategy is thus unrealistic. We then have to restrict pre-strategies to
|
||||
\emph{strategies}:
|
||||
$\text{call}_0 \leq \text{call}_1$ on the above strategy is allowed, stating
|
||||
that the operating system cannot decide to start the process $1$ before the
|
||||
process $0$. It is not up to the program to decide that, this strategy is thus
|
||||
unrealistic. We then have to restrict pre-strategies to \emph{strategies}:
|
||||
|
||||
\begin{definition}[strategy]
|
||||
A \emph{strategy} is a pre-strategy $\sigma : A$ that
|
||||
``behaves well'', \ie{} that is
|
||||
\begin{enumerate}[(i)]
|
||||
\item\label{def:receptive}
|
||||
\textit{receptive}: $\forall x \in \config(\sigma), x \sqcup
|
||||
\set{e} \in \config(A) \land \rho(e) = \ominus \implies x \sqcup
|
||||
\set{e} \in \config(\sigma)$
|
||||
|
||||
\textit{receptive}: for all $x \in \config(A)$ \st{}
|
||||
$x \forkover{e^-}$, $e \in \sigma$;
|
||||
|
||||
\item\label{def:courteous}
|
||||
\textit{courteous}: $\forall e \edgeArrow_\sigma e' \in \sigma$,
|
||||
$(\rho(e),\rho(e')) \neq (-,+) \implies
|
||||
e \edgeArrow_A e'$.
|
||||
\textit{courteous}: $\forall x \edgeArrow_\sigma x' \in \sigma$,
|
||||
$(\rho(x),\rho(x')) \neq (-,+) \implies
|
||||
x \edgeArrow_A x'$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
|
@ -642,8 +634,8 @@ to consider an arrow ${\ostar \edgeArrow \ominus}$, which would mean forcing
|
|||
Opponent to wait for a move (either from Player or Opponent) before playing
|
||||
their move; but ${\oplus \edgeArrow \oplus}$ is also unreasonable, since we're
|
||||
working in a concurrent context. Intuitively, one could think that when playing
|
||||
$e$ then $e'$, it is undefined whether Opponent will receive $e$ then $e'$ or
|
||||
$e'$ then $e$.
|
||||
$x$ then $y$, it is undefined whether Opponent will receive $x$ then $y$ or $y$
|
||||
then $x$.
|
||||
|
||||
%%%%%
|
||||
\subsubsection{Operations on games and strategies}\label{sssec:es_operations}
|
||||
|
@ -688,7 +680,7 @@ one strategy plays against the other''.
|
|||
${(\leq_\sigma \cup \leq_\tau)}^\ast$ (transitive closure) that may not
|
||||
respect antisymmetry, that is, may have causal loops. The event structure
|
||||
$\sigma \wedge \tau$ is then obtained by removing all the elements
|
||||
contained in such loops from $\sigma \cap \tau$, yielding a partial order.
|
||||
contained in such loops from $\sigma \cap \tau$, yielding a regular order.
|
||||
\end{definition}
|
||||
|
||||
\textit{This construction is a simplified version of the analogous one
|
||||
|
@ -715,8 +707,8 @@ f$).
|
|||
\begin{definition}[compositional interaction]
|
||||
Given two strategies $\sigma : A^\perp \parallel B$ and $\tau : B^\perp
|
||||
\parallel C$, their \emph{compositional interaction} $\tau \strInteract
|
||||
\sigma$ is an event structure defined as $(\sigma \parallel C^\perp) \wedge
|
||||
(A \parallel \tau)$, where $A$ and $C^\perp$ are seen as strategies.
|
||||
\sigma$ is an event structure defined as $(\sigma \parallel C) \wedge
|
||||
(A^\perp \parallel \tau)$, where $A^\perp$ and $C$ are seen as strategies.
|
||||
\end{definition}
|
||||
|
||||
The idea is to put in correspondence the ``middle'' states (those of $B$) while
|
||||
|
@ -754,8 +746,7 @@ the other player from each board on the other.
|
|||
|
||||
The copycat strategy of a game is indeed an identity for the composition of
|
||||
\emph{strategies}. In fact, it even holds that for a \emph{pre-}strategy
|
||||
$\sigma : A$, $\sigma$ is a strategy $\iff$ $\cc_A \strComp \sigma =
|
||||
\sigma$~\cite{rideau2011concurrent}.
|
||||
$\sigma : A$, $\sigma$ is a strategy $\iff$ $\cc_A \strComp \sigma = \sigma$.
|
||||
|
||||
\begin{example}[copycat]
|
||||
If we consider the following game $A$
|
||||
|
@ -817,7 +808,8 @@ language as strategies as defined in figure~\ref{fig:llccs:interp}.
|
|||
\node (0) at (5,0.65) [draw=red,ellipse] {call};
|
||||
\node (1) at (5,-0.65) [draw=green,ellipse] {done};
|
||||
\path[->]
|
||||
(0) edge [bend right] (2)
|
||||
(0) edge (1)
|
||||
edge [bend right] (2)
|
||||
edge [bend right] (4)
|
||||
(2) edge (3)
|
||||
(4) edge (5)
|
||||
|
@ -840,7 +832,8 @@ language as strategies as defined in figure~\ref{fig:llccs:interp}.
|
|||
\node (0) at (5,0.65) [draw=red,ellipse] {call};
|
||||
\node (1) at (5,-0.65) [draw=green,ellipse] {done};
|
||||
\path[->]
|
||||
(0) edge [bend right] (4)
|
||||
(0) edge (1)
|
||||
edge [bend right] (4)
|
||||
(2) edge (3)
|
||||
(4) edge (5)
|
||||
(3) edge [bend right] (1)
|
||||
|
@ -862,7 +855,8 @@ language as strategies as defined in figure~\ref{fig:llccs:interp}.
|
|||
\node (0) at (5,0.65) [draw=red,ellipse] {call};
|
||||
\node (1) at (5,-0.65) [draw=green,ellipse] {done};
|
||||
\path[->]
|
||||
(0) edge [bend right] (2)
|
||||
(0) edge (1)
|
||||
edge [bend right] (2)
|
||||
(2) edge (3)
|
||||
(4) edge (5)
|
||||
(3) edge (4)
|
||||
|
@ -884,7 +878,8 @@ language as strategies as defined in figure~\ref{fig:llccs:interp}.
|
|||
\node (0) at (7.5,0.65) [draw=red,ellipse] {call};
|
||||
\node (1) at (7.5,-0.65) [draw=green,ellipse] {done};
|
||||
\path[->]
|
||||
(0) edge [bend right] (2)
|
||||
(0) edge (1)
|
||||
edge [bend right] (2)
|
||||
(2) edge (3)
|
||||
(3) edge [bend right] (1)
|
||||
(4) edge (5)
|
||||
|
@ -897,21 +892,10 @@ language as strategies as defined in figure~\ref{fig:llccs:interp}.
|
|||
\caption{\llccs{} interpretation as strategies}\label{fig:llccs:interp}
|
||||
\end{figure}
|
||||
|
||||
In the representation above, the drawn strategies are organized in columns: for
|
||||
instance, the strategy involved in $\seman{P \parallel Q}$ has type $P^\perp
|
||||
\parallel P^\perp \parallel P$. Each column of events stands for one of those
|
||||
games, in this order.
|
||||
|
||||
The $\seman{-}$ operator always sends a term $x_1 : A_1, \ldots, x_p : A_p
|
||||
\vdash t : B$ to a strategy $\seman{t} : \seman{A_1}^\perp \parallel \ldots
|
||||
\parallel \seman{A_p}^\perp \parallel \seman{B}$. For brevity purposes, the
|
||||
associativity and commutativity steps ---~up to isomorphism~--- will be kept
|
||||
implicit here, although those are handled very formally in the implementation.
|
||||
|
||||
A lot of these interpretations is what was expected: $\proc$ has the same
|
||||
interpretation as presented before, and that of $\chan$ is set to the same, $1$
|
||||
is interpreted as the game playing \textit{done} while $0$ does not, the arrow
|
||||
is the type introduced for functions.
|
||||
A lot of these interpretations is what was expected: $\proc$ and $\chan$ have
|
||||
the same interpretation as presented before, $1$ is interpreted as the game
|
||||
playing \textit{done} while $0$ does not, the arrow is the type introduced for
|
||||
functions.
|
||||
|
||||
A variable is represented by a \emph{copycat} of its type, to keep a version of
|
||||
the variable in the environment, reflecting the judgement $x:A \vdash x:A$.
|
||||
|
@ -924,15 +908,21 @@ copycat wires up perfectly $\seman{t} \parallel \seman{u}$: the version of $x$
|
|||
from the environment of $t$ is connected to $u$, and the output of $t$ is
|
||||
connected to the output of the term.
|
||||
|
||||
In the representation above, the drawn strategies are organized in columns: for
|
||||
instance, the strategy involved in $\seman{P \parallel Q}$ has type $P^\perp
|
||||
\parallel P^\perp \parallel P$. Each column of events stands for one of those
|
||||
games, in this order.
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Adequacy}
|
||||
|
||||
We will now describe the main steps of the proof of the major result of this
|
||||
study, the \emph{adequacy} of the game semantics.
|
||||
We will now prove the major result of this study, the \emph{adequacy} of the
|
||||
game semantics.
|
||||
|
||||
\begin{theorem}[adequacy]
|
||||
The previous interpretation is \emph{adequate} with respect to the
|
||||
operational semantics, that is
|
||||
The previous interpretation is \emph{adequate} with the operational
|
||||
semantics, that is
|
||||
\[ \forall P \textit{ st. } \left(\vdash P : \proc\right),~
|
||||
\left(P \Downarrow\right) \iff \left(\seman{P} = \seman{1}\right) \]
|
||||
\end{theorem}
|
||||
|
@ -956,10 +946,6 @@ required.
|
|||
\item $\forall a : \chan,~a \in l \implies \bar{a} \not\in l$.
|
||||
\end{enumerate}
|
||||
|
||||
where $\freevars(P)$ denotes the set of free variables of $P$, defined as
|
||||
usual by induction over the syntax as the set of variables unbound in the
|
||||
term.
|
||||
|
||||
\end{definition}
|
||||
|
||||
\begin{lemma}
|
||||
|
@ -1024,10 +1010,7 @@ The theorem is mostly a consequence of the following lemma:
|
|||
We prove its contrapositive judgement, $P \neq 1\,\&\,\seman{P} =
|
||||
\seman{1} \implies \exists Q\,:\,P \redarrow{\tau} Q$ by induction over the
|
||||
syntax of \linccs{} (\wlogen, we can assume that $P
|
||||
\not\longrightarrow_\beta$, because we can always do every
|
||||
$\beta$-reduction before any other $\tau$-reduction, and because the
|
||||
$\beta$-reduced term corresponding to a counter-example is a
|
||||
counter-example as well; thus the terms are in \linccs): for each
|
||||
\not\longrightarrow_\beta$, thus the terms are in \linccs): for each
|
||||
syntactic construction, we prove that under the induction hypotheses, there
|
||||
is such a $Q$.
|
||||
\end{proof}
|
||||
|
@ -1040,13 +1023,10 @@ can compute its associated strategy and check whether it is $\seman{1}$.
|
|||
\section{Implementation of deterministic concurrent games}
|
||||
|
||||
\hfill\href{https://tobast.fr/l3/demo.html}
|
||||
{\includegraphics[height=2em]{tryme32.png}~\raisebox{0.5em}{Try
|
||||
online\footnotemark}}
|
||||
\footnotetext{\url{{https://tobast.fr/l3/demo.html}}}
|
||||
{\includegraphics[height=2em]{tryme32.png}~\raisebox{0.5em}{Try online}}
|
||||
\qquad \href{https://github.com/tobast/cam-strategies/}
|
||||
{\includegraphics[height=2em]{github32.png}~\raisebox{0.5em}{Github
|
||||
repository\footnotemark}}
|
||||
\footnotetext{\url{https://github.com/tobast/cam-strategies/}}
|
||||
repository}}
|
||||
|
||||
\vspace{1em}
|
||||
|
||||
|
@ -1115,9 +1095,9 @@ literature.
|
|||
|
||||
I also explored the possibility to reach a full-abstraction result. The
|
||||
full-abstraction property states that two terms are \emph{observationally
|
||||
equivalent} if and only if their (denotational) semantics are also
|
||||
observationally equivalent, that is, in this context, for all $P,Q$ two
|
||||
\llccs{} terms such that $\Gamma \vdash P,Q : A$,
|
||||
equivalent} if and only if their (denotational) semantics are equal, that is,
|
||||
in this context,
|
||||
for all $P,Q$ two \llccs{} terms such that $\Gamma \vdash P,Q : A$,
|
||||
|
||||
\[
|
||||
\left[ \forall \calC[-] \text{ a context }\,:\,
|
||||
|
@ -1125,14 +1105,7 @@ observationally equivalent, that is, in this context, for all $P,Q$ two
|
|||
\calC[P] \Downarrow \iff \calC[Q] \Downarrow
|
||||
\right]
|
||||
\quad\iff\quad
|
||||
\left( \seman{P} \simeq \seman{Q} \right)
|
||||
\]
|
||||
|
||||
where $\simeq$ denotes the observational equivalence on strategies, that is,
|
||||
|
||||
\[
|
||||
(\sigma : A) \simeq (\tau : A) \iff \forall (\alpha : A^\perp \parallel
|
||||
\proc), \alpha \strComp \sigma = \alpha \strComp \tau
|
||||
\left( \seman{P} = \seman{Q} \right)
|
||||
\]
|
||||
|
||||
Yet, by lack of time, I had to abandon this path. Indeed, this would have
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
\usepackage{xcolor}
|
||||
|
||||
\definecolor{note_text}{HTML}{671800}
|
||||
\definecolor{note_back}{HTML}{00A2E3}
|
||||
\usepackage[dvipsnames]{xcolor}
|
||||
|
||||
\newcommand{\qtodo}[1]{\colorbox{orange}{\textcolor{blue}{#1}}}
|
||||
\newcommand{\todo}[1]{\qtodo{\textbf{TODO:}\.#1}}
|
||||
\newcommand{\qnote}[1]{\colorbox{note_back}{\textcolor{note_front}{[#1]}}}
|
||||
\newcommand{\qnote}[1]{\colorbox{Cerulean}{\textcolor{Sepia}{[#1]}}}
|
||||
\newcommand{\note}[1]{\qnote{\textbf{NOTE:}\.#1}}
|
||||
|
|
|
@ -1,10 +1,6 @@
|
|||
TEX=slides.tex
|
||||
BASE=slides
|
||||
all: $(TEX)
|
||||
pdflatex $(TEX)
|
||||
pdflatex $(TEX)
|
||||
|
||||
upload: all
|
||||
scp $(BASE).pdf www.tobast:~/tobast.fr/public_html/l3/slides.pdf
|
||||
|
||||
|
||||
|
|
|
@ -1,63 +0,0 @@
|
|||
%% By Théophile Bastian
|
||||
%% Useful commands for concurrent games as event structures
|
||||
|
||||
\usepackage[normalem]{ulem}
|
||||
\usepackage{MnSymbol}
|
||||
\usepackage{stmaryrd}
|
||||
\usepackage{tikz}
|
||||
\usepackage{relsize}
|
||||
|
||||
\usetikzlibrary{shapes,arrows,positioning}
|
||||
|
||||
\newcommand{\fname}[1]{\textsc{#1}}
|
||||
|
||||
\newcommand{\con}{\operatorname{Con}}
|
||||
\newcommand{\confl}{\raisebox{0.5em}{\uwave{\hspace{2em}}}}
|
||||
|
||||
\newcommand{\obseq}{\simeq_\text{obs}}
|
||||
|
||||
\newcommand{\cov}{{{\mathrel-\joinrel\subset}}}
|
||||
\newcommand{\longcov}[1]{{\stackrel{#1}
|
||||
{\mathrel-\joinrel\relbar\joinrel\subset\,}}}
|
||||
\newcommand{\forkover}[1]{\longcov{#1}}
|
||||
\newcommand{\fork}{\cov}
|
||||
|
||||
\newcommand{\edgeArrow}{\rightarrowtriangle}
|
||||
\newcommand{\linarrow}{\rightspoon}
|
||||
\newcommand{\redarrow}[1]{\overset{#1}{\longrightarrow}}
|
||||
|
||||
\newcommand{\config}{\mathscr{C}}
|
||||
\newcommand{\downclose}[1]{\left[#1\right]}
|
||||
|
||||
\newcommand{\strComp}{\odot}
|
||||
\newcommand{\strInteract}{\ostar}
|
||||
\newcommand{\strParallel}{\parallel}
|
||||
|
||||
\newcommand{\seman}[1]{\llbracket{} #1 \rrbracket}
|
||||
|
||||
\newcommand{\tens}{\otimes}
|
||||
\newcommand{\Tens}{\mathlarger\otimes}
|
||||
|
||||
% LCCS
|
||||
|
||||
\newcommand{\newch}[1]{\left(\nu #1\right)}
|
||||
|
||||
\newcommand{\linearmark}{$\mathcal{L}$}
|
||||
\newcommand{\lcalc}{$\lambda$-calculus}
|
||||
\newcommand{\lccs}{$\lambda$CCS}
|
||||
\newcommand{\linccs}{{\linearmark}CCS}
|
||||
\newcommand{\llccs}{$\lambda${\linearmark}CCS}
|
||||
\newcommand{\proc}{\mathbb{P}}
|
||||
\newcommand{\chan}{\mathbb{C}}
|
||||
|
||||
\newcommand{\validctx}{\mathcal{L}}
|
||||
\newcommand{\freevars}{\operatorname{fv}}
|
||||
|
||||
% Copycat
|
||||
\newcommand{\CC}{{\rm C\!\!\!C}}
|
||||
\newcommand{\cc}{\mathrm{\,c\!\!\!\!c\,}}
|
||||
|
||||
\newcommand{\includedot}[2][]{%
|
||||
\begin{tikzpicture}[>=latex,line join=bevel,#1]
|
||||
\input{_build/dot/#2.tex}
|
||||
\end{tikzpicture}}
|
|
@ -1,80 +0,0 @@
|
|||
\usepackage{stmaryrd}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{amsthm}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{fancybox}
|
||||
\usepackage{mathrsfs}
|
||||
\usepackage{mathtools}
|
||||
|
||||
\newcommand{\eqdef}{{~\coloneqq~}}
|
||||
\newcommand{\lAnd}{~\&~}
|
||||
|
||||
\newcommand{\overOr}[2]{\begin{array}{r l}
|
||||
& #1 \\
|
||||
\textit{or} & \\
|
||||
& #2
|
||||
\end{array}}
|
||||
|
||||
\newcommand{\id}{\operatorname{id}}
|
||||
|
||||
% Intervalle discret.
|
||||
\newcommand{\discrIv}[1]{\llbracket #1 \rrbracket}
|
||||
|
||||
% ensembliste
|
||||
\newcommand{\set}[1]{\left\{ #1 \right\}}
|
||||
\newcommand{\card}[1]{\left\vert{} #1 \right\vert}
|
||||
\newcommand{\abs}[1]{\left\vert{} #1 \right\vert}
|
||||
\newcommand{\interior}[1]{\left({#1}\right)^\circ}
|
||||
\newcommand{\floor}[1]{\left\lfloor{} #1 \right\rfloor}
|
||||
\newcommand{\ceil}[1]{\left\lceil{} #1 \right\rceil}
|
||||
|
||||
% Abréviations courrantes
|
||||
\newcommand{\ie}{\textit{ie.}}
|
||||
\newcommand{\eg}{\textit{eg.}}
|
||||
\newcommand{\Eg}{\textit{Eg.}}
|
||||
\newcommand{\wrt}{\textit{wrt.}}
|
||||
\newcommand{\wlogen}{\textit{wlog.}}
|
||||
\newcommand{\st}{\textit{st.}}
|
||||
|
||||
% Notations à polices étranges
|
||||
\newcommand{\domain}{\mathcal{D}}
|
||||
\newcommand{\bigO}{\mathcal{O}}
|
||||
\newcommand{\calA}{\mathcal{A}}
|
||||
\newcommand{\calC}{\mathcal{C}}
|
||||
\newcommand{\calG}{\mathcal{G}}
|
||||
\newcommand{\calV}{\mathcal{V}}
|
||||
\newcommand{\calT}{\mathcal{T}}
|
||||
\newcommand{\calP}{\mathcal{P}}
|
||||
|
||||
% Ensembles
|
||||
\newcommand{\realset}{\mathbb{R}}
|
||||
\newcommand{\natset}{\mathbb{N}}
|
||||
\newcommand{\relset}{\mathbb{Z}}
|
||||
|
||||
% Probas
|
||||
\newcommand{\prob}{\mathbb{P}}
|
||||
\newcommand{\probP}[1]{\mathbb{P}\left(#1\right)}
|
||||
\newcommand{\expec}{\mathbb{E}}
|
||||
\newcommand{\expecP}[1]{\mathbb{E}\left[#1\right]}
|
||||
\newcommand{\variance}{\mathbb{V}}
|
||||
\newcommand{\ber}{\mathcal{B}er}
|
||||
\newcommand{\bin}{\mathcal{B}in}
|
||||
\newcommand{\poi}{\mathcal{P}oi}
|
||||
|
||||
% Suppression des points
|
||||
\newcommand{\ibar}{\overline{\imath}}
|
||||
\newcommand{\jbar}{\overline{\jmath}}
|
||||
|
||||
% Fonctions
|
||||
%\newcommand{\functiondef}[4]{\left\lbrace \begin{tabular}{r l} #1 & \rightarrow #2 \\ #3 & \mapsto #4\end{tabular} \right.}
|
||||
\newcommand{\functiondef}[4]{\begin{cases}
|
||||
#1 & \to #2 \\
|
||||
#3 & \mapsto #4
|
||||
\end{cases}}
|
||||
|
||||
|
||||
% Preuve par équivalence - puces
|
||||
\newcommand{\impliesbullet}{\ovalbox{$\implies$}}
|
||||
\newcommand{\impliedbybullet}{\ovalbox{$\impliedby$}}
|
|
@ -1,26 +0,0 @@
|
|||
\usepackage{hyperref}
|
||||
\usepackage{xcolor}
|
||||
|
||||
\definecolor{link_blue}{RGB}{0,0,97}
|
||||
\definecolor{cite_green}{HTML}{009B55}
|
||||
|
||||
\hypersetup{
|
||||
% bookmarks=true, % show bookmarks bar?
|
||||
% unicode=false, % non-Latin characters in Acrobat’s bookmarks
|
||||
% pdftoolbar=true, % show Acrobat’s toolbar?
|
||||
% pdfmenubar=true, % show Acrobat’s menu?
|
||||
% pdffitwindow=false, % window fit to page when opened
|
||||
% pdfstartview={FitH}, % fits the width of the page to the window
|
||||
% pdftitle={My title}, % title
|
||||
% pdfauthor={Author}, % author
|
||||
% pdfsubject={Subject}, % subject of the document
|
||||
% pdfcreator={Creator}, % creator of the document
|
||||
% pdfproducer={Producer}, % producer of the document
|
||||
% pdfkeywords={keyword1} {key2} {key3}, % list of keywords
|
||||
% pdfnewwindow=true, % links in new PDF window
|
||||
colorlinks=true, % false: boxed links; true: colored links
|
||||
linkcolor=link_blue, % color of internal links (change box color with linkbordercolor)
|
||||
citecolor=cite_green, % color of links to bibliography
|
||||
filecolor=magenta, % color of file links
|
||||
urlcolor=link_blue % color of external links
|
||||
}
|
|
@ -1,63 +0,0 @@
|
|||
\usepackage{listings}
|
||||
\usepackage{algorithmicx}
|
||||
\usepackage{algpseudocode}
|
||||
\usepackage{color}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{courier}
|
||||
\definecolor{color_comment}{HTML}{2D6F19}
|
||||
\definecolor{color_linenum}{HTML}{9E9E9E}
|
||||
\definecolor{color_strings}{HTML}{D300F3}
|
||||
|
||||
|
||||
\lstset{ %
|
||||
% backgroundcolor=\color{white}, % choose the background color; you must add \usepackage{color} or \usepackage{xcolor}
|
||||
basicstyle=\footnotesize\ttfamily, % the size of the fonts that are used for the code
|
||||
breakatwhitespace=false, % sets if automatic breaks should only happen at whitespace
|
||||
breaklines=true, % sets automatic line breaking
|
||||
captionpos=b, % sets the caption-position to bottom
|
||||
commentstyle=\color{color_comment}, % comment style
|
||||
% deletekeywords={...}, % if you want to delete keywords from the given language
|
||||
% escapeinside={\%*}{*)}, % if you want to add LaTeX within your code
|
||||
extendedchars=true, % lets you use non-ASCII characters; for 8-bits encodings only, does not work with UTF-8
|
||||
frame=none, % adds a frame around the code
|
||||
keepspaces=true, % keeps spaces in text, useful for keeping indentation of code (possibly needs columns=flexible)
|
||||
keywordstyle=\color{blue}, % keyword style
|
||||
morekeywords={*,...}, % if you want to add more keywords to the set
|
||||
numbers=left, % where to put the line-numbers; possible values are (none, left, right)
|
||||
numbersep=5pt, % how far the line-numbers are from the code
|
||||
numberstyle=\tiny\color{color_linenum}, % the style that is used for the line-numbers
|
||||
rulecolor=\color{black}, % if not set, the frame-color may be changed on line-breaks within not-black text (e.g. comments (green here))
|
||||
showspaces=false, % show spaces everywhere adding particular underscores; it overrides 'showstringspaces'
|
||||
showstringspaces=false, % underline spaces within strings only
|
||||
showtabs=false, % show tabs within strings adding particular underscores
|
||||
stepnumber=1, % the step between two line-numbers. If it's 1, each line will be numbered
|
||||
stringstyle=\color{color_strings}, % string literal style
|
||||
tabsize=4, % sets default tabsize to 2 spaces
|
||||
% title=\lstname, % show the filename of files included with \lstinputlisting; also try caption instead of title
|
||||
% inputencoding=utf8/latin1 % To accept utf8 encoding
|
||||
}
|
||||
|
||||
\lstset{literate=
|
||||
{á}{{\'a}}1 {é}{{\'e}}1 {í}{{\'i}}1 {ó}{{\'o}}1 {ú}{{\'u}}1
|
||||
{Á}{{\'A}}1 {É}{{\'E}}1 {Í}{{\'I}}1 {Ó}{{\'O}}1 {Ú}{{\'U}}1
|
||||
{à}{{\`a}}1 {è}{{\`e}}1 {ì}{{\`i}}1 {ò}{{\`o}}1 {ù}{{\`u}}1
|
||||
{À}{{\`A}}1 {È}{{\'E}}1 {Ì}{{\`I}}1 {Ò}{{\`O}}1 {Ù}{{\`U}}1
|
||||
{ä}{{\"a}}1 {ë}{{\"e}}1 {ï}{{\"i}}1 {ö}{{\"o}}1 {ü}{{\"u}}1
|
||||
{Ä}{{\"A}}1 {Ë}{{\"E}}1 {Ï}{{\"I}}1 {Ö}{{\"O}}1 {Ü}{{\"U}}1
|
||||
{â}{{\^a}}1 {ê}{{\^e}}1 {î}{{\^i}}1 {ô}{{\^o}}1 {û}{{\^u}}1
|
||||
{Â}{{\^A}}1 {Ê}{{\^E}}1 {Î}{{\^I}}1 {Ô}{{\^O}}1 {Û}{{\^U}}1
|
||||
{œ}{{\oe}}1 {Œ}{{\OE}}1 {æ}{{\ae}}1 {Æ}{{\AE}}1 {ß}{{\ss}}1
|
||||
{ű}{{\H{u}}}1 {Ű}{{\H{U}}}1 {ő}{{\H{o}}}1 {Ő}{{\H{O}}}1
|
||||
{ç}{{\c c}}1 {Ç}{{\c C}}1 {ø}{{\o}}1 {å}{{\r a}}1 {Å}{{\r A}}1
|
||||
{€}{{\EUR}}1 {£}{{\pounds}}1 {¬}{{$\lnot$}}1 {∞}{{$\infty$}}1
|
||||
}
|
||||
|
||||
\newcommand{\true}{\lstinline$true$}
|
||||
\newcommand{\false}{\lstinline$false$}
|
||||
|
||||
\newcommand{\lstbash}[1]{\lstinline[language=bash]$#1$}
|
||||
\newcommand{\lstocaml}[1]{\lstinline[language=Caml]$#1$}
|
||||
\newcommand{\lstcpp}[1]{\lstinline[language=C++]$#1$}
|
||||
\newcommand{\lstc}[1]{\lstinline[language=C]$#1$}
|
||||
\newcommand{\lstpython}[1]{\lstinline[language=python]$#1$}
|
||||
|
|
@ -1,397 +1,36 @@
|
|||
% vim: :spell spelllang=fr
|
||||
\documentclass[11pt]{beamer}
|
||||
\usetheme{Warsaw}
|
||||
%\usecolortheme{wolverine}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage[french]{babel}
|
||||
\usepackage[T1]{fontenc}
|
||||
%\usepackage{my_hyperref}
|
||||
\usepackage{my_listings}
|
||||
\usepackage{libertine}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{concurgames}
|
||||
\usepackage{theorems}
|
||||
\usepackage{todo}
|
||||
\usepackage{my_listings}
|
||||
\usepackage{my_hyperref}
|
||||
\usepackage{math}
|
||||
\usepackage{tikz}
|
||||
|
||||
\usetikzlibrary{positioning}
|
||||
|
||||
\setbeamertemplate{navigation symbols}{}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\author[Théophile \textsc{Bastian}]{Théophile \textsc{Bastian}\\
|
||||
\author{Théophile \textsc{Bastian}\\
|
||||
\small{Sous la supervision de Glynn \textsc{Winskel} et Pierre
|
||||
\textsc{Clairambault}}}
|
||||
\title{Soutenance de stage}
|
||||
%\subtitle{Structures d'événements dans la sémantique des jeux}
|
||||
\subtitle{Sémantique déterministe de langage concurrentiel en sémantique des
|
||||
jeux}
|
||||
\date{Juin\,--\,juillet 2016}
|
||||
\title{Soutenance de stage\\
|
||||
Structures d'événements dans la sémantique des jeux}
|
||||
\date{Juin\,--\,Juillet 2016}
|
||||
%\logo{}
|
||||
\institute{Computer Laboratory --- Cambridge, UK}
|
||||
\begin{document}
|
||||
|
||||
\begin{frame}
|
||||
\titlepage{}
|
||||
% \tableofcontents
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\tableofcontents
|
||||
\end{frame}
|
||||
|
||||
\section{Langage étudié}
|
||||
|
||||
\begin{frame}{\llccs~: syntaxe}
|
||||
\begin{columns}[t]
|
||||
\column{0.5\textwidth}
|
||||
\begin{center}Termes\end{center}\vspace{-1em}
|
||||
\begin{align*}
|
||||
t,u,\ldots ::=~&1 & \text{(succès)}\\
|
||||
\vert~&0 & \text{(erreur)}\\
|
||||
\vert~&t \parallel u & \text{(parallèle)}\\
|
||||
\vert~&t \cdot u & \text{(séquentiel)}\\
|
||||
\vert~&(\nu a) t & \text{(nouveau canal)} \\
|
||||
& & \\
|
||||
\vert~&x \in \mathbb{V} & \text{(variable)} \\
|
||||
\vert~&t\,u & \text{(application)}\\
|
||||
\vert~&\lambda x^A \cdot t & \text{(abstraction)}\\
|
||||
\end{align*}
|
||||
\column{0.5\textwidth}
|
||||
\begin{center}Types\end{center}\vspace{-1em}
|
||||
\begin{align*}
|
||||
A,B,\ldots ::=~&\proc & \text{(processus)} \\
|
||||
\vert~&\chan & \text{(canal)} \\
|
||||
\vert~&A \linarrow B & \text{(flèche linéaire)}
|
||||
\end{align*}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{\llccs~: règles de typage}
|
||||
\begin{align*}
|
||||
\frac{~}{\,\vdash 0:\proc} & (\textit{Ax}_0) &
|
||||
\frac{~}{\,\vdash 1:\proc} & (\textit{Ax}_1) &
|
||||
\alert{\frac{~}{t:A \vdash t:A}} & \alert{(\textit{Ax})} &
|
||||
\end{align*}\vspace{-1em}\begin{align*}
|
||||
\frac{\Gamma \vdash P : \proc \quad \Delta \vdash Q : \proc}
|
||||
{\Gamma,\Delta \vdash P \cdot Q : \proc}
|
||||
& (\cdot_\proc) &
|
||||
\frac{\Gamma \vdash P : \proc}
|
||||
{\Gamma,a:\chan \vdash a \cdot P: \proc}
|
||||
& (\cdot_\chan)
|
||||
\end{align*} \vspace{-1em} \begin{align*}
|
||||
\alert{\frac{\Gamma \vdash P : \proc \quad \Delta \vdash Q : \proc}
|
||||
{\Gamma,\Delta \vdash P \parallel Q : \proc}}
|
||||
& \alert{(\parallel)} &
|
||||
\frac{\Gamma, a:\chan, \bar{a}:\chan \vdash P : \proc}
|
||||
{\Gamma \vdash (\nu a) P : \proc}
|
||||
& (\nu)
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
\frac{~}{x : A \vdash x : A} & (\textit{Ax}) &
|
||||
\frac{\Gamma \vdash t : A \linarrow B \quad \Delta \vdash u : A}
|
||||
{\Gamma,\Delta \vdash t~u : B} & (\textit{App}) &
|
||||
\end{align*} \vspace{-1em} \begin{align*}
|
||||
\frac{\Gamma, x : A \vdash t : B}
|
||||
{\Gamma \vdash \lambda x^{A} \cdot t : A \linarrow B} & (Abs)
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{\llccs~: sémantique opérationnelle}
|
||||
\begin{align*}
|
||||
\frac{~}{a \cdot P \redarrow{a} P} & &
|
||||
\frac{~}{1 \parallel P \redarrow{\tau} P} & &
|
||||
\frac{~}{1 \cdot P \redarrow{\tau} P} & &
|
||||
\end{align*}\begin{align*}
|
||||
\frac{P \longrightarrow_\beta Q}
|
||||
{P \redarrow{\tau} Q} & &
|
||||
\frac{P \redarrow{\tau_c} Q}
|
||||
{(\nu a) P \redarrow{\tau} Q} & (c \in \set{a,\bar{a}})&
|
||||
\end{align*}\begin{align*}
|
||||
\alert{\frac{P \redarrow{a} P'\quad Q \redarrow{\bar{a}} Q'}
|
||||
{P \parallel Q \redarrow{\tau_a} P' \parallel Q'}} & &
|
||||
\frac{P \redarrow{x} P'}
|
||||
{(\nu a)P \redarrow{x} (\nu a)P'} & (x \not\in \set{a,\tau_a}) &
|
||||
\end{align*}\begin{align*}
|
||||
\frac{P \redarrow{x} P'}
|
||||
{P \parallel Q \redarrow{x} P' \parallel Q} & &
|
||||
\frac{Q \redarrow{x} Q'}
|
||||
{P \parallel Q \redarrow{x} P \parallel Q'} & &
|
||||
\frac{P \redarrow{x} P'}
|
||||
{P \cdot Q \redarrow{x} P' \cdot Q} & &
|
||||
\end{align*}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Quelques exemples}
|
||||
\begin{itemize}
|
||||
\item $(1 \parallel 1) \cdot 1$~: succès
|
||||
\pause%
|
||||
\item $\newch{a} (a \cdot 1 \parallel \bar{a} \cdot 1)$
|
||||
\pause%
|
||||
\item $\newch{a} (a \cdot \bar{a} \cdot 1)$~: \textit{deadlock}
|
||||
\pause%
|
||||
\item $F := \lambda x^\chan \cdot \lambda y^\chan \cdot x \cdot y \cdot
|
||||
1$
|
||||
\pause%
|
||||
\item $\newch{a} F\,a\,\bar{a}$~: \textit{deadlock}
|
||||
\pause%
|
||||
\item $\newch{a} \newch{b} (F\,a\,b \parallel \bar{a} \cdot \bar{b}
|
||||
\cdot 1)$~: termine
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\section{Structures d'événements}
|
||||
|
||||
\begin{frame}{Sémantique des jeux}
|
||||
\begin{itemize}
|
||||
\item Programme $\longrightarrow$ jeu à deux joueurs
|
||||
\pause\vspace{1em}
|
||||
\item \textit{Player}~: joue pour le programme
|
||||
\item \textit{Opponent}~: joue pour l'environnement (OS, utilisateur,
|
||||
\ldots)
|
||||
\pause\vspace{1em}
|
||||
\item \textit{Jeu}~: structure imposée (architecture physique, \ldots)
|
||||
\item \textit{Stratégie}~: modélisation du programme
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Sémantique par entrelacements}
|
||||
|
||||
\begin{frame}{Sémantique usuelle~: par entrelacements}
|
||||
\begin{itemize}
|
||||
\item Jeux en arbres\\
|
||||
\begin{columns}
|
||||
\column{0.5\textwidth}
|
||||
\begin{center}\begin{tikzpicture}[node distance=0.5cm]
|
||||
\node (1) {a};
|
||||
\node (2) [below left=of 1] {b};
|
||||
\node (3) [below right=of 1] {c};
|
||||
\path [->]
|
||||
(1) edge (2)
|
||||
edge (3);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\column{0.5\textwidth}
|
||||
États du jeu~: $\varepsilon,~a,~a \cdot b,~a \cdot c$
|
||||
\end{columns}
|
||||
|
||||
\pause%
|
||||
\item \og{}Exécution parallèle~\fg{}:
|
||||
\begin{columns}
|
||||
\column{0.5\textwidth}
|
||||
\begin{center}\begin{tikzpicture}[node distance=0.5cm]
|
||||
\node (1) {a};
|
||||
\node (2) [below left=of 1] {b};
|
||||
\node (3) [below right=of 1] {c};
|
||||
\node (5) [right=of 3] {e};
|
||||
\node (4) [above right=of 5] {d};
|
||||
\node (6) [below right=of 4] {f};
|
||||
\path [->]
|
||||
(1) edge (2)
|
||||
edge (3)
|
||||
(4) edge (5)
|
||||
edge (6);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\column{0.5\textwidth}
|
||||
États du jeu~: $\varepsilon,~a,~d,~a \cdot b,~a \cdot d \cdot e
|
||||
\cdot b, \ldots$
|
||||
\end{columns}
|
||||
|
||||
\pause%
|
||||
\item Comment représenter \og{}proprement~\fg{} le jeu suivant~?
|
||||
\begin{center}\begin{tikzpicture}[node distance=0.5cm]
|
||||
\node (3) {c};
|
||||
\node (1) [above left=of 3] {a};
|
||||
\node (2) [above right=of 3] {b};
|
||||
\path [->]
|
||||
(1) edge (3)
|
||||
(2) edge (3);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\subsection{Structures d'événements}
|
||||
|
||||
\begin{frame}{Structures d'événements}
|
||||
\begin{definition}{structure d'événement (déterministe)}
|
||||
$(E, \leq_E)$ ensemble d'\emph{événements} partiellement ordonné.
|
||||
\end{definition}
|
||||
\pause%
|
||||
\begin{definition}{structure d'événement polarisée (SEP) / \alert{jeu}}
|
||||
$(E, \leq_E, \rho_E)$ où $(E, \leq_E)$ est une structure d'événements
|
||||
et $\rho_E : E \to \set{\ominus, \oplus}$.
|
||||
|
||||
$E^\perp$~: SEP $E$ avec $\rho^\perp$.
|
||||
\end{definition}
|
||||
$\qquad\longrightarrow$ DAG
|
||||
\pause%
|
||||
\begin{definition}{configuration}
|
||||
$x \subseteq E$ tel que $\forall e \in E, e' \in x, e \leq e' \implies
|
||||
e \in x$.\\
|
||||
$\config(E)$~: ensemble des configurations de $E$.\\
|
||||
Pour $e \in E$, $[e]$ configuration induite par $e$.
|
||||
\end{definition}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Structures d'événements (suite)}
|
||||
\begin{definition}{stratégie}
|
||||
$\left(\sigma : A\right)$~: stratégie sur $A$ si $\sigma$ SEP
|
||||
\textit{tq.}\\
|
||||
\begin{itemize}
|
||||
\item $\sigma \subseteq A$
|
||||
\item $\config(\sigma) \subseteq \config(A)$
|
||||
\item $\rho_\sigma = {\rho_A}_{\vert \sigma}$
|
||||
\item $\cc_A \strComp \sigma = \sigma$ ($\cc_A$~:
|
||||
\og{}identité~\fg)
|
||||
\end{itemize}
|
||||
\end{definition}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Opérations sur structures d'événements}
|
||||
\begin{definition}{parallèle}
|
||||
$A \parallel B := \set{0} \times A \cup \set{1} \times B$~: mise
|
||||
en parallèle de deux SE\@.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}{interaction}
|
||||
Pour $\sigma : A$, $\tau : A^\perp$, $\sigma \wedge \tau$~: $\sigma
|
||||
\cap \tau$ où les boucles causales sont retirées.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}{composition}
|
||||
Pour $\sigma : A^\perp \parallel B$, $\tau : B^\perp \parallel C$,
|
||||
\[ \tau \strComp \sigma := \left(\sigma \parallel C^\perp\right) \wedge
|
||||
\left(A \parallel \tau\right) \]
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}{copycat}
|
||||
$\cc_A : A^\perp \parallel A$~: $(A^\perp \parallel \emptyset) \cup
|
||||
(\emptyset \parallel A)$, plus les $\ominus \rightarrow \oplus$ d'une
|
||||
composante à l'autre.
|
||||
\end{definition}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{Interprétation de \llccs}
|
||||
|
||||
\subsection{Sémantique dénotationnelle}
|
||||
|
||||
\begin{frame}{Interprétation de \llccs}
|
||||
\begin{columns}[c]
|
||||
\column{0.5\textwidth}
|
||||
|
||||
\begin{align*}
|
||||
\seman{\proc} &\eqdef \begin{tikzpicture}[baseline]
|
||||
\node (1) at (0,0.5) [draw=red,ellipse] {call};
|
||||
\node (2) at (0,-0.5) [draw=green,ellipse] {done};
|
||||
\draw [->] (1) -- (2);
|
||||
\end{tikzpicture}
|
||||
= \seman{\chan} \\
|
||||
%
|
||||
\seman{1} &\eqdef \seman{P} \\
|
||||
\seman{0} &\eqdef \begin{tikzpicture}[baseline]
|
||||
\node (1) at (0,0.2) [draw=red,ellipse] {call};
|
||||
\end{tikzpicture}
|
||||
\end{align*}
|
||||
|
||||
\column{0.5\textwidth}
|
||||
\begin{align*}
|
||||
\seman{x^A} &\eqdef \cc_{\seman{A}} \\
|
||||
\seman{A \linarrow B} &\eqdef \seman{A}^\perp \parallel \seman{B}\\
|
||||
\seman{t^{A \linarrow B}~u^{A}} &\eqdef
|
||||
\cc_{A \linarrow B} \strComp \left( \seman{t} \parallel
|
||||
\seman{u} \right) \\
|
||||
\seman{\lambda x^A \cdot t} &\eqdef \seman{t}
|
||||
\end{align*}
|
||||
\end{columns}
|
||||
|
||||
\vspace{1em}
|
||||
\hrule{}
|
||||
\vspace{0.5em}
|
||||
|
||||
\emph{Suit les règles de typage}~:
|
||||
\[
|
||||
u_1 : A_1, \ldots, u_p : A_p \vdash t : B \implies \seman{t} :
|
||||
\seman{A_1}^\perp \parallel \ldots \parallel \seman{A_p}^\perp
|
||||
\parallel \seman{B}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\subsection{Adequacy}
|
||||
|
||||
\begin{frame}{Adequacy}
|
||||
\begin{theorem}{adequacy}
|
||||
La sémantique dénotationnelle est \emph{adéquate} à la sémantique
|
||||
opérationnelle, \ie{}
|
||||
\[
|
||||
\forall P\,/\,(\vdash P : \proc),~(P \redarrow{\tau}^\ast 1) \iff
|
||||
(\seman{P} = \seman{1})
|
||||
\]
|
||||
\end{theorem}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Adequacy, preuve}
|
||||
\begin{itemize}
|
||||
\item Sens direct~: induction sur $P \redarrow{\tau}^\ast 1$, en
|
||||
utilisant une induction auxiliaire~: $\forall P \redarrow{x} Q,\,
|
||||
\forall l \in \mathcal{L}_{P \redarrow{x} Q}$,
|
||||
\begin{itemize}
|
||||
\item si $x = \tau$, $\seman{P}_l = \seman{Q}_l$~;
|
||||
\item si $x = a : \chan$, $\seman{P} = \seman{a \cdot Q}_l$~;
|
||||
\item si $x = \tau_a$, $\seman{P}_{a::l} = \seman{Q}_l$~;
|
||||
\end{itemize}
|
||||
où $\seman{u}_{h::t} \eqdef \seman{\newch{h}u}_t$, $\seman{u}_{[]}
|
||||
\eqdef \seman{u}$.
|
||||
\pause\vspace{1em}
|
||||
\item Sens réciproque~: on prouve par induction sur la syntaxe la
|
||||
contraposée, $P \neq 1 \land \seman{P} = \seman{1} \implies P
|
||||
\redarrow{\tau}$.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\section{Implémentation}
|
||||
|
||||
\begin{frame}{Implémentation --- backend}
|
||||
\begin{itemize}
|
||||
\item Implémentation des opérations sur jeux/stratégies
|
||||
\item Utilisable comme backend ou en toplevel
|
||||
\item Représentation Dot de jeux/stratégies
|
||||
\item Essentiellement OCaml
|
||||
\item SLOCCount~: 2330 lignes
|
||||
\item Nécessité de travailler très formellement (associativité, \ldots)
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Frontend \llccs}
|
||||
\begin{itemize}
|
||||
\item Parseur/lexeur \llccs{}
|
||||
\item Transformation des termes en stratégies
|
||||
\item Passage par le backend $\leadsto$ stratégie
|
||||
\item Adequacy~: permet de décider si $P \redarrow{\tau}^\ast 1$
|
||||
\item Frontend javascript~: entrée de stratégie et retour graphique sur
|
||||
page web
|
||||
\end{itemize}
|
||||
\vfill
|
||||
\hfill\url{https://tobast.fr/l3/demo.html}
|
||||
\end{frame}
|
||||
|
||||
\section*{}
|
||||
|
||||
\begin{frame}{Conclusion}
|
||||
\begin{center}\begin{Huge}Merci~!\end{Huge}\end{center}
|
||||
\end{frame}
|
||||
%\begin{frame}
|
||||
%\tableofcontents
|
||||
%\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
% vim: :spell spelllang=fr
|
||||
|
||||
\renewenvironment{definition}[1]{\begin{block}{Définition~: #1.}}{\end{block}}
|
||||
\renewenvironment{theorem}[1]{\begin{alertblock}{Théorème~: #1.}}{\end{alertblock}}
|
||||
\renewenvironment{lemma}[1]{\begin{block}{Lemme~: #1.}}{\end{block}}
|
|
@ -1,9 +0,0 @@
|
|||
\usepackage{xcolor}
|
||||
|
||||
\definecolor{note_text}{HTML}{671800}
|
||||
\definecolor{note_back}{HTML}{00A2E3}
|
||||
|
||||
\newcommand{\qtodo}[1]{\colorbox{orange}{\textcolor{blue}{#1}}}
|
||||
\newcommand{\todo}[1]{\qtodo{\textbf{TODO:}\.#1}}
|
||||
\newcommand{\qnote}[1]{\colorbox{note_back}{\textcolor{note_front}{[#1]}}}
|
||||
\renewcommand{\note}[1]{\qnote{\textbf{NOTE:}\.#1}}
|
Loading…
Reference in a new issue