Add details about full abstraction
This commit is contained in:
parent
461ca6aeaa
commit
9c452f5f22
3 changed files with 31 additions and 5 deletions
|
@ -14,6 +14,8 @@
|
||||||
\newcommand{\con}{\operatorname{Con}}
|
\newcommand{\con}{\operatorname{Con}}
|
||||||
\newcommand{\confl}{\raisebox{0.5em}{\uwave{\hspace{2em}}}}
|
\newcommand{\confl}{\raisebox{0.5em}{\uwave{\hspace{2em}}}}
|
||||||
|
|
||||||
|
\newcommand{\obseq}{\simeq_\text{obs}}
|
||||||
|
|
||||||
\newcommand{\cov}{{{\mathrel-\joinrel\subset}}}
|
\newcommand{\cov}{{{\mathrel-\joinrel\subset}}}
|
||||||
\newcommand{\longcov}[1]{{\stackrel{#1}
|
\newcommand{\longcov}[1]{{\stackrel{#1}
|
||||||
{\mathrel-\joinrel\relbar\joinrel\subset\,}}}
|
{\mathrel-\joinrel\relbar\joinrel\subset\,}}}
|
||||||
|
|
7
math.sty
7
math.sty
|
@ -9,6 +9,13 @@
|
||||||
\usepackage{mathtools}
|
\usepackage{mathtools}
|
||||||
|
|
||||||
\newcommand{\eqdef}{{~\coloneqq~}}
|
\newcommand{\eqdef}{{~\coloneqq~}}
|
||||||
|
\newcommand{\lAnd}{~\&~}
|
||||||
|
|
||||||
|
\newcommand{\overOr}[2]{\begin{array}{r l}
|
||||||
|
& #1 \\
|
||||||
|
\textit{or} & \\
|
||||||
|
& #2
|
||||||
|
\end{array}}
|
||||||
|
|
||||||
\newcommand{\id}{\operatorname{id}}
|
\newcommand{\id}{\operatorname{id}}
|
||||||
|
|
||||||
|
|
27
report.tex
27
report.tex
|
@ -1089,11 +1089,28 @@ not be too hard to lift it to a language closer to real-world programming
|
||||||
languages, through the inclusion of the imperative primitives found in the
|
languages, through the inclusion of the imperative primitives found in the
|
||||||
literature.
|
literature.
|
||||||
|
|
||||||
I also explored the possibility to reach a full-abstraction result, but
|
\medskip
|
||||||
abandoned this path by lack of time. Indeed, this would have required either to
|
|
||||||
modify \llccs{} or to restrict the authorized strategies, because of the
|
I also explored the possibility to reach a full-abstraction result. The
|
||||||
following legal strategy, which cannot be expressed as the semantics of a term
|
full-abstraction property states that two terms are \emph{observationally
|
||||||
in \llccs{}:
|
equivalent} if and only if their (denotational) semantics are equal, that is,
|
||||||
|
in this context,
|
||||||
|
for all $P,Q$ two \llccs{} terms such that $\Gamma \vdash P,Q : A$,
|
||||||
|
|
||||||
|
\[
|
||||||
|
\left[ \forall \calC[-] \text{ a context }\,:\,
|
||||||
|
\left( \vdash \calC[P] : \proc \right),~
|
||||||
|
\calC[P] \Downarrow \iff \calC[Q] \Downarrow
|
||||||
|
\right]
|
||||||
|
\quad\iff\quad
|
||||||
|
\left( \seman{P} = \seman{Q} \right)
|
||||||
|
\]
|
||||||
|
|
||||||
|
Yet, by lack of time, I had to abandon this path. Indeed, this would have
|
||||||
|
required either to modify \llccs{} or to restrict the authorized strategies,
|
||||||
|
because of the following legal strategy, which cannot be expressed as the
|
||||||
|
semantics of a term in \llccs{}:
|
||||||
|
|
||||||
\[ \begin{tikzpicture}
|
\[ \begin{tikzpicture}
|
||||||
\node (0P) at (2,2) {$\proc$};
|
\node (0P) at (2,2) {$\proc$};
|
||||||
\node (0C) at (0,2) {$\chan$};
|
\node (0C) at (0,2) {$\chan$};
|
||||||
|
|
Loading…
Reference in a new issue