Bit more on operations
This commit is contained in:
parent
508ffd0351
commit
9a1fddaf8e
2 changed files with 42 additions and 4 deletions
2
math.sty
2
math.sty
|
@ -10,6 +10,8 @@
|
|||
|
||||
\newcommand{\eqdef}{{~\coloneqq~}}
|
||||
|
||||
\newcommand{\id}{\operatorname{id}}
|
||||
|
||||
% Intervalle discret.
|
||||
\newcommand{\discrIv}[1]{\llbracket #1 \rrbracket}
|
||||
|
||||
|
|
44
report.tex
44
report.tex
|
@ -21,6 +21,7 @@
|
|||
\newcommand{\qtodo}[1]{\colorbox{orange}{\textcolor{blue}{#1}}}
|
||||
\newcommand{\todo}[1]{\colorbox{orange}{\qtodo{\textbf{TODO:} #1}}}
|
||||
\newcommand{\qnote}[1]{\colorbox{Cerulean}{\textcolor{Sepia}{[#1]}}}
|
||||
\newcommand{\note}[1]{\qnote{\textbf{NOTE:} #1}}
|
||||
|
||||
\author{Théophile \textsc{Bastian}, supervised by Glynn \textsc{Winskel}
|
||||
and Pierre \textsc{Clairambault} \\
|
||||
|
@ -533,14 +534,18 @@ then $x$.
|
|||
%%%%%
|
||||
\subsubsection{Operations on games and strategies}
|
||||
|
||||
\todo{intro}
|
||||
In order to manipulate strategies and define them by induction over the syntax,
|
||||
the following operations will be extensively used. It may also be worth noting
|
||||
that in the original formalism~\cite{castellan2016concurrent}, games,
|
||||
strategies and maps between them form a bicategory in which these operations
|
||||
play special roles.
|
||||
|
||||
In this whole section, $E$ and $F$ denotes ESPs, $A$ and $B$ denotes games,
|
||||
$\sigma: S \to A$ and $\tau: T \to B$ denotes strategies.
|
||||
In this whole section, unless stated otherwise, $E$ and $F$ denotes ESPs, $A$,
|
||||
$B$ and $C$ denotes games, $\sigma: A$ and $\tau: B$ denotes strategies.
|
||||
|
||||
\begin{definition}[Parallel composition]
|
||||
The \emph{parallel composition} $E \parallel F$ of two ESPs is an ESP
|
||||
whose events are $\left(\set{0} \times E\right) \cup \left(\set{1} \times
|
||||
whose events are $\left(\set{0} \times E\right) \sqcup \left(\set{1} \times
|
||||
F\right)$ (the disjoint tagged union of the events of $E$ and $F$), and
|
||||
whose partial order is $\leq_E$ on $E$ and $\leq_F$ on $F$, with no
|
||||
relation between elements of $E$ and $F$.
|
||||
|
@ -549,6 +554,37 @@ $\sigma: S \to A$ and $\tau: T \to B$ denotes strategies.
|
|||
polarities) and to strategies.
|
||||
\end{definition}
|
||||
|
||||
Given two strategies on dual games $A$ and $A^\perp$, it is interesting to
|
||||
compute their \emph{interaction}, that is, ``what will happen if one strategy
|
||||
plays against the other''.
|
||||
|
||||
\note{Are the following names clear enough?}
|
||||
\begin{definition}[Interaction]
|
||||
Given two strategies $\sigma : A$ and $\tau : A^\perp$, their
|
||||
\emph{interaction} $\sigma \wedge \tau$ is the ESP
|
||||
$\sigma \cup \tau \subseteq A$ from which causal loops has been removed.
|
||||
|
||||
More precisely, $\sigma \cup \tau$ is a set adjoined with a \emph{preorder}
|
||||
($\leq_\sigma \cup \leq_\tau$) that may not respect antisymmetry, that is,
|
||||
may have causal loops. $\sigma \wedge \tau$ is then obtained by removing
|
||||
all the elements contained in such loops from $\sigma \cup \tau$.
|
||||
\end{definition}
|
||||
\textit{Note: this can be interpreted as a pullback in the category mentioned
|
||||
above.\\
|
||||
This construction, even though it is equivalent to the construction
|
||||
of~\cite{castellan2016concurrent} when considering deterministic strategies, is
|
||||
no longer valid when adding a consistency set.}
|
||||
|
||||
\begin{definition}[Compositional interaction]
|
||||
Given two strategies $\sigma : A^\perp \parallel B$ and $\tau : B^\perp
|
||||
\parallel C$, their \emph{compositional interaction} $\tau \strInteract
|
||||
\sigma$ is defined as $(\sigma \parallel \id_C) \wedge (\id_A \parallel
|
||||
\tau)$. \qtodo{Tell me more?}
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[Strategies composition]
|
||||
\end{definition}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\subsection{Interpretation of \llccs}
|
||||
|
||||
|
|
Loading…
Reference in a new issue