perf-eh_elf/util/call-path.c
Linus Torvalds 16c00db4bb Merge tag 'afs-fixes-20180514' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull AFS fixes from David Howells:
 "Here's a set of patches that fix a number of bugs in the in-kernel AFS
  client, including:

   - Fix directory locking to not use individual page locks for
     directory reading/scanning but rather to use a semaphore on the
     afs_vnode struct as the directory contents must be read in a single
     blob and data from different reads must not be mixed as the entire
     contents may be shuffled about between reads.

   - Fix address list parsing to handle port specifiers correctly.

   - Only give up callback records on a server if we actually talked to
     that server (we might not be able to access a server).

   - Fix some callback handling bugs, including refcounting,
     whole-volume callbacks and when callbacks actually get broken in
     response to a CB.CallBack op.

   - Fix some server/address rotation bugs, including giving up if we
     can't probe a server; giving up if a server says it doesn't have a
     volume, but there are more servers to try.

   - Fix the decoding of fetched statuses to be OpenAFS compatible.

   - Fix the handling of server lookups in Cache Manager ops (such as
     CB.InitCallBackState3) to use a UUID if possible and to handle no
     server being found.

   - Fix a bug in server lookup where not all addresses are compared.

   - Fix the non-encryption of calls that prevents some servers from
     being accessed (this also requires an AF_RXRPC patch that has
     already gone in through the net tree).

  There's also a patch that adds tracepoints to log Cache Manager ops
  that don't find a matching server, either by UUID or by address"

* tag 'afs-fixes-20180514' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  afs: Fix the non-encryption of calls
  afs: Fix CB.CallBack handling
  afs: Fix whole-volume callback handling
  afs: Fix afs_find_server search loop
  afs: Fix the handling of an unfound server in CM operations
  afs: Add a tracepoint to record callbacks from unlisted servers
  afs: Fix the handling of CB.InitCallBackState3 to find the server by UUID
  afs: Fix VNOVOL handling in address rotation
  afs: Fix AFSFetchStatus decoder to provide OpenAFS compatibility
  afs: Fix server rotation's handling of fileserver probe failure
  afs: Fix refcounting in callback registration
  afs: Fix giving up callbacks on server destruction
  afs: Fix address list parsing
  afs: Fix directory page locking
2018-05-15 10:48:36 -07:00

123 lines
2.8 KiB
C

/*
* call-path.h: Manipulate a tree data structure containing function call paths
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/rbtree.h>
#include <linux/list.h>
#include "util.h"
#include "call-path.h"
static void call_path__init(struct call_path *cp, struct call_path *parent,
struct symbol *sym, u64 ip, bool in_kernel)
{
cp->parent = parent;
cp->sym = sym;
cp->ip = sym ? 0 : ip;
cp->db_id = 0;
cp->in_kernel = in_kernel;
RB_CLEAR_NODE(&cp->rb_node);
cp->children = RB_ROOT;
}
struct call_path_root *call_path_root__new(void)
{
struct call_path_root *cpr;
cpr = zalloc(sizeof(struct call_path_root));
if (!cpr)
return NULL;
call_path__init(&cpr->call_path, NULL, NULL, 0, false);
INIT_LIST_HEAD(&cpr->blocks);
return cpr;
}
void call_path_root__free(struct call_path_root *cpr)
{
struct call_path_block *pos, *n;
list_for_each_entry_safe(pos, n, &cpr->blocks, node) {
list_del(&pos->node);
free(pos);
}
free(cpr);
}
static struct call_path *call_path__new(struct call_path_root *cpr,
struct call_path *parent,
struct symbol *sym, u64 ip,
bool in_kernel)
{
struct call_path_block *cpb;
struct call_path *cp;
size_t n;
if (cpr->next < cpr->sz) {
cpb = list_last_entry(&cpr->blocks, struct call_path_block,
node);
} else {
cpb = zalloc(sizeof(struct call_path_block));
if (!cpb)
return NULL;
list_add_tail(&cpb->node, &cpr->blocks);
cpr->sz += CALL_PATH_BLOCK_SIZE;
}
n = cpr->next++ & CALL_PATH_BLOCK_MASK;
cp = &cpb->cp[n];
call_path__init(cp, parent, sym, ip, in_kernel);
return cp;
}
struct call_path *call_path__findnew(struct call_path_root *cpr,
struct call_path *parent,
struct symbol *sym, u64 ip, u64 ks)
{
struct rb_node **p;
struct rb_node *node_parent = NULL;
struct call_path *cp;
bool in_kernel = ip >= ks;
if (sym)
ip = 0;
if (!parent)
return call_path__new(cpr, parent, sym, ip, in_kernel);
p = &parent->children.rb_node;
while (*p != NULL) {
node_parent = *p;
cp = rb_entry(node_parent, struct call_path, rb_node);
if (cp->sym == sym && cp->ip == ip)
return cp;
if (sym < cp->sym || (sym == cp->sym && ip < cp->ip))
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
cp = call_path__new(cpr, parent, sym, ip, in_kernel);
if (!cp)
return NULL;
rb_link_node(&cp->rb_node, node_parent, p);
rb_insert_color(&cp->rb_node, &parent->children);
return cp;
}