perf-eh_elf/Documentation/callchain-overhead-calculation.txt
Linus Torvalds 16c00db4bb Merge tag 'afs-fixes-20180514' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull AFS fixes from David Howells:
 "Here's a set of patches that fix a number of bugs in the in-kernel AFS
  client, including:

   - Fix directory locking to not use individual page locks for
     directory reading/scanning but rather to use a semaphore on the
     afs_vnode struct as the directory contents must be read in a single
     blob and data from different reads must not be mixed as the entire
     contents may be shuffled about between reads.

   - Fix address list parsing to handle port specifiers correctly.

   - Only give up callback records on a server if we actually talked to
     that server (we might not be able to access a server).

   - Fix some callback handling bugs, including refcounting,
     whole-volume callbacks and when callbacks actually get broken in
     response to a CB.CallBack op.

   - Fix some server/address rotation bugs, including giving up if we
     can't probe a server; giving up if a server says it doesn't have a
     volume, but there are more servers to try.

   - Fix the decoding of fetched statuses to be OpenAFS compatible.

   - Fix the handling of server lookups in Cache Manager ops (such as
     CB.InitCallBackState3) to use a UUID if possible and to handle no
     server being found.

   - Fix a bug in server lookup where not all addresses are compared.

   - Fix the non-encryption of calls that prevents some servers from
     being accessed (this also requires an AF_RXRPC patch that has
     already gone in through the net tree).

  There's also a patch that adds tracepoints to log Cache Manager ops
  that don't find a matching server, either by UUID or by address"

* tag 'afs-fixes-20180514' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  afs: Fix the non-encryption of calls
  afs: Fix CB.CallBack handling
  afs: Fix whole-volume callback handling
  afs: Fix afs_find_server search loop
  afs: Fix the handling of an unfound server in CM operations
  afs: Add a tracepoint to record callbacks from unlisted servers
  afs: Fix the handling of CB.InitCallBackState3 to find the server by UUID
  afs: Fix VNOVOL handling in address rotation
  afs: Fix AFSFetchStatus decoder to provide OpenAFS compatibility
  afs: Fix server rotation's handling of fileserver probe failure
  afs: Fix refcounting in callback registration
  afs: Fix giving up callbacks on server destruction
  afs: Fix address list parsing
  afs: Fix directory page locking
2018-05-15 10:48:36 -07:00

109 lines
3.3 KiB
Plaintext

Overhead calculation
--------------------
The overhead can be shown in two columns as 'Children' and 'Self' when
perf collects callchains. The 'self' overhead is simply calculated by
adding all period values of the entry - usually a function (symbol).
This is the value that perf shows traditionally and sum of all the
'self' overhead values should be 100%.
The 'children' overhead is calculated by adding all period values of
the child functions so that it can show the total overhead of the
higher level functions even if they don't directly execute much.
'Children' here means functions that are called from another (parent)
function.
It might be confusing that the sum of all the 'children' overhead
values exceeds 100% since each of them is already an accumulation of
'self' overhead of its child functions. But with this enabled, users
can find which function has the most overhead even if samples are
spread over the children.
Consider the following example; there are three functions like below.
-----------------------
void foo(void) {
/* do something */
}
void bar(void) {
/* do something */
foo();
}
int main(void) {
bar()
return 0;
}
-----------------------
In this case 'foo' is a child of 'bar', and 'bar' is an immediate
child of 'main' so 'foo' also is a child of 'main'. In other words,
'main' is a parent of 'foo' and 'bar', and 'bar' is a parent of 'foo'.
Suppose all samples are recorded in 'foo' and 'bar' only. When it's
recorded with callchains the output will show something like below
in the usual (self-overhead-only) output of perf report:
----------------------------------
Overhead Symbol
........ .....................
60.00% foo
|
--- foo
bar
main
__libc_start_main
40.00% bar
|
--- bar
main
__libc_start_main
----------------------------------
When the --children option is enabled, the 'self' overhead values of
child functions (i.e. 'foo' and 'bar') are added to the parents to
calculate the 'children' overhead. In this case the report could be
displayed as:
-------------------------------------------
Children Self Symbol
........ ........ ....................
100.00% 0.00% __libc_start_main
|
--- __libc_start_main
100.00% 0.00% main
|
--- main
__libc_start_main
100.00% 40.00% bar
|
--- bar
main
__libc_start_main
60.00% 60.00% foo
|
--- foo
bar
main
__libc_start_main
-------------------------------------------
In the above output, the 'self' overhead of 'foo' (60%) was add to the
'children' overhead of 'bar', 'main' and '\_\_libc_start_main'.
Likewise, the 'self' overhead of 'bar' (40%) was added to the
'children' overhead of 'main' and '\_\_libc_start_main'.
So '\_\_libc_start_main' and 'main' are shown first since they have
same (100%) 'children' overhead (even though they have zero 'self'
overhead) and they are the parents of 'foo' and 'bar'.
Since v3.16 the 'children' overhead is shown by default and the output
is sorted by its values. The 'children' overhead is disabled by
specifying --no-children option on the command line or by adding
'report.children = false' or 'top.children = false' in the perf config
file.