1
0
Fork 0
mirror of https://github.com/tobast/libunwind-eh_elf.git synced 2025-01-24 09:10:29 +01:00

Start to implement it for real.

(Logical change 1.162)
This commit is contained in:
hp.com!davidm 2004-01-30 00:01:24 +00:00
parent 9b332c6092
commit f913dd3bd1
2 changed files with 117 additions and 93 deletions

View file

@ -1,5 +1,5 @@
/* libunwind - a platform-independent unwind library /* libunwind - a platform-independent unwind library
Copyright (c) 2002-2003 Hewlett-Packard Development Company, L.P. Copyright (c) 2002-2004 Hewlett-Packard Development Company, L.P.
Contributed by David Mosberger-Tang <davidm@hpl.hp.com> Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
This file is part of libunwind. This file is part of libunwind.
@ -32,101 +32,123 @@ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
HIDDEN inline int HIDDEN inline int
x86_local_resume (unw_addr_space_t as, unw_cursor_t *cursor, void *arg) x86_local_resume (unw_addr_space_t as, unw_cursor_t *cursor, void *arg)
{ {
#if 1 #if defined(__linux)
printf ("%s: implement me\n", __FUNCTION__);
return -UNW_EINVAL;
#else
struct cursor *c = (struct cursor *) cursor; struct cursor *c = (struct cursor *) cursor;
unw_fpreg_t fpval; ucontext_t *uc = c->dwarf.as_arg;
ucontext_t *uc = arg;
unw_word_t val, sol;
int i, ret;
# define SET_NAT(n) \
do \
{ \
ret = x86_access_reg (c, UNW_X86_NAT + (n), &val, 0); \
if (ret < 0) \
return ret; \
if (val) \
uc->uc_mcontext.sc_nat |= (unw_word_t) 1 << n; \
} \
while (0)
# define SET_REG(f, r) \
do \
{ \
ret = x86_get (c, c->r, &val); \
if (ret < 0) \
return ret; \
uc->uc_mcontext.f = val; \
} \
while (0)
# define SET_FPREG(f, r) \
do \
{ \
ret = x86_getfp (c, c->r, &fpval); \
if (ret < 0) \
return ret; \
uc->uc_mcontext.f.u.bits[0] = fpval.raw.bits[0]; \
uc->uc_mcontext.f.u.bits[1] = fpval.raw.bits[1]; \
} \
while (0)
/* ensure c->pi is up-to-date: */ /* Ensure c->pi is up-to-date. On x86, it's relatively common to be
if ((ret = x86_make_proc_info (c)) < 0) missing DWARF unwind info. We don't want to fail in that case,
because the frame-chain still would let us do a backtrace at
least. */
dwarf_make_proc_info (&c->dwarf);
if (unlikely (c->sigcontext_format != X86_SCF_NONE))
{
struct sigcontext *sc = (struct sigcontext *) c->sigcontext_addr;
#if 0
/* We're returning to a frame that was (either directly or
indirectly) interrupted by a signal. We have to restore
_both_ "preserved" and "scratch" registers. That doesn't
leave us any registers to work with, and the only way we can
achieve this is by doing a sigreturn().
Note: it might be tempting to think that we don't have to
restore the scratch registers when returning to a frame that
was indirectly interrupted by a signal. However, that is not
safe because that frame and its descendants could have been
using a special convention that stores "preserved" state in
scratch registers. For example, the Linux fsyscall
convention does this with r11 (to save ar.pfs) and b6 (to
save "rp"). */
sc->sc_gr[12] = c->psp;
c->psp = c->sigcontext_addr - c->sigcontext_off;
/* Clear the "in-syscall" flag, because in general we won't be
returning to the interruption-point and we need all registers
restored. */
sc->sc_flags &= ~IA64_SC_FLAG_IN_SYSCALL;
sc->sc_ip = c->ip;
sc->sc_cfm = c->cfm & (((unw_word_t) 1 << 38) - 1);
sc->sc_pr = (c->pr & ~PR_SCRATCH) | (sc->sc_pr & ~PR_PRESERVED);
if ((ret = ia64_get (c, c->loc[IA64_REG_PFS], &sc->sc_ar_pfs)) < 0
|| (ret = ia64_get (c, c->loc[IA64_REG_FPSR], &sc->sc_ar_fpsr)) < 0
|| (ret = ia64_get (c, c->loc[IA64_REG_UNAT], &sc->sc_ar_unat)) < 0)
return ret; return ret;
SET_REG (sc_ar_pfs, pfs_loc); sc->sc_gr[1] = c->pi.gp;
SET_REG (sc_br[0], ip_loc); if (c->eh_valid_mask & 0x1) sc->sc_gr[15] = c->eh_args[0];
SET_REG (sc_pr, pr_loc); if (c->eh_valid_mask & 0x2) sc->sc_gr[16] = c->eh_args[1];
SET_REG (sc_ar_rnat, rnat_loc); if (c->eh_valid_mask & 0x4) sc->sc_gr[17] = c->eh_args[2];
SET_REG (sc_ar_lc, lc_loc); if (c->eh_valid_mask & 0x8) sc->sc_gr[18] = c->eh_args[3];
SET_REG (sc_ar_fpsr, fpsr_loc);
SET_REG (sc_gr[4], r4_loc); SET_REG(sc_gr[5], r5_loc);
SET_REG (sc_gr[6], r6_loc); SET_REG(sc_gr[7], r7_loc);
uc->uc_mcontext.sc_nat = 0;
SET_NAT (4); SET_NAT(5);
SET_NAT (6); SET_NAT(7);
SET_REG (sc_br[1], b1_loc);
SET_REG (sc_br[2], b2_loc);
SET_REG (sc_br[3], b3_loc);
SET_REG (sc_br[4], b4_loc);
SET_REG (sc_br[5], b5_loc);
SET_FPREG (sc_fr[2], f2_loc);
SET_FPREG (sc_fr[3], f3_loc);
SET_FPREG (sc_fr[4], f4_loc);
SET_FPREG (sc_fr[5], f5_loc);
for (i = 16; i < 32; ++i)
SET_FPREG (sc_fr[i], fr_loc[i - 16]);
if (c->is_signal_frame)
abort (); /* XXX this needs to be fixed... */
/* Account for the fact that __x86_install_context() returns via
br.ret, which will decrement bsp by size-of-locals. */
sol = (uc->uc_mcontext.sc_ar_pfs >> 7) & 0x7f;
uc->uc_mcontext.sc_ar_bsp = x86_rse_skip_regs (c->bsp, sol);
uc->uc_mcontext.sc_flags = 0;
uc->uc_mcontext.sc_gr[1] = c->pi.gp;
uc->uc_mcontext.sc_gr[12] = c->psp;
__x86_install_context (uc, c->eh_args[0], c->eh_args[1], c->eh_args[2],
c->eh_args[3]);
#endif #endif
Debug (9, "resuming at ip=%x via sigreturn(%p)\n", c->dwarf.ip, sc);
sigreturn (sc);
}
else
{
Debug (9, "resuming at ip=%x via setcontext()\n", c->dwarf.ip);
setcontext (uc);
}
#else
# warning Implement me!
#endif
return -UNW_EINVAL;
} }
#endif /* !UNW_REMOTE_ONLY */ #endif /* !UNW_REMOTE_ONLY */
/* This routine is responsible for copying the register values in
cursor C and establishing them as the current machine state. */
static inline int
establish_machine_state (struct cursor *c)
{
int (*access_reg) (unw_addr_space_t, unw_regnum_t, unw_word_t *,
int write, void *);
int (*access_fpreg) (unw_addr_space_t, unw_regnum_t, unw_fpreg_t *,
int write, void *);
unw_addr_space_t as = c->dwarf.as;
void *arg = c->dwarf.as_arg;
unw_fpreg_t fpval;
unw_word_t val;
int reg;
access_reg = as->acc.access_reg;
access_fpreg = as->acc.access_fpreg;
Debug (8, "copying out cursor state\n");
for (reg = 0; reg < UNW_REG_LAST; ++reg)
{
Debug (16, "copying %s\n", unw_regname (reg));
if (unw_is_fpreg (reg))
{
if (tdep_access_fpreg (c, reg, &fpval, 0) >= 0)
(*access_fpreg) (as, reg, &fpval, 1, arg);
}
else
{
if (tdep_access_reg (c, reg, &val, 0) >= 0)
(*access_reg) (as, reg, &val, 1, arg);
}
}
return 0;
}
PROTECTED int PROTECTED int
unw_resume (unw_cursor_t *cursor) unw_resume (unw_cursor_t *cursor)
{ {
struct cursor *c = (struct cursor *) cursor; struct cursor *c = (struct cursor *) cursor;
int ret;
#ifdef UNW_LOCAL_ONLY Debug (2, "(cursor=%p)\n", c);
return x86_local_resume (c->dwarf.as, cursor, c->dwarf.as_arg);
#else if ((ret = establish_machine_state (c)) < 0)
return (*c->dwarf.as->acc.resume) (c->dwarf.as, cursor, c->dwarf.as_arg); return ret;
#endif
return (*c->dwarf.as->acc.resume) (c->dwarf.as, (unw_cursor_t *) c,
c->dwarf.as_arg);
} }

View file

@ -32,6 +32,8 @@ unw_step (unw_cursor_t *cursor)
struct cursor *c = (struct cursor *) cursor; struct cursor *c = (struct cursor *) cursor;
int ret, i; int ret, i;
Debug (2, "(cursor=%p)\n", c);
/* Try DWARF-based unwinding... */ /* Try DWARF-based unwinding... */
ret = dwarf_step (&c->dwarf); ret = dwarf_step (&c->dwarf);
@ -41,8 +43,7 @@ unw_step (unw_cursor_t *cursor)
or skip over the signal trampoline. */ or skip over the signal trampoline. */
struct dwarf_loc ebp_loc, eip_loc; struct dwarf_loc ebp_loc, eip_loc;
Debug (14, "dwarf_step() failed (ret=%d), trying frame-chain\n", Debug (13, "dwarf_step() failed (ret=%d), trying frame-chain\n", ret);
ret);
if (unw_is_signal_frame (cursor)) if (unw_is_signal_frame (cursor))
{ {
@ -53,6 +54,7 @@ unw_step (unw_cursor_t *cursor)
followed by a struct sigcontext. With SA_SIGINFO, the followed by a struct sigcontext. With SA_SIGINFO, the
arguments consist a signal number, a siginfo *, and a arguments consist a signal number, a siginfo *, and a
ucontext *. */ ucontext *. */
unw_word_t sigcontext_addr;
unw_word_t siginfo_ptr_addr = c->dwarf.cfa + 4; unw_word_t siginfo_ptr_addr = c->dwarf.cfa + 4;
unw_word_t sigcontext_ptr_addr = c->dwarf.cfa + 8; unw_word_t sigcontext_ptr_addr = c->dwarf.cfa + 8;
unw_word_t siginfo_ptr, sigcontext_ptr; unw_word_t siginfo_ptr, sigcontext_ptr;
@ -70,10 +72,8 @@ unw_step (unw_cursor_t *cursor)
|| sigcontext_ptr > c->dwarf.cfa + 256) || sigcontext_ptr > c->dwarf.cfa + 256)
{ {
/* Not plausible for SA_SIGINFO signal */ /* Not plausible for SA_SIGINFO signal */
unw_word_t sigcontext_addr = c->dwarf.cfa + 4; c->sigcontext_format = X86_SCF_LINUX_SIGFRAME;
esp_loc = DWARF_LOC (sigcontext_addr + LINUX_SC_ESP_OFF, 0); c->sigcontext_addr = sigcontext_addr = c->dwarf.cfa + 4;
ebp_loc = DWARF_LOC (sigcontext_addr + LINUX_SC_EBP_OFF, 0);
eip_loc = DWARF_LOC (sigcontext_addr + LINUX_SC_EIP_OFF, 0);
} }
else else
{ {
@ -82,10 +82,13 @@ unw_step (unw_cursor_t *cursor)
least fs and _fsh are always zero for linux, so it is least fs and _fsh are always zero for linux, so it is
not just unlikely, but impossible that we would end not just unlikely, but impossible that we would end
up here. */ up here. */
esp_loc = DWARF_LOC (sigcontext_ptr + LINUX_UC_ESP_OFF, 0); c->sigcontext_format = X86_SCF_LINUX_RT_SIGFRAME;
ebp_loc = DWARF_LOC (sigcontext_ptr + LINUX_UC_EBP_OFF, 0); c->sigcontext_addr = sigcontext_ptr;
eip_loc = DWARF_LOC (sigcontext_ptr + LINUX_UC_EIP_OFF, 0); sigcontext_addr = sigcontext_ptr + LINUX_UC_MCONTEXT_OFF;
} }
esp_loc = DWARF_LOC (sigcontext_addr + LINUX_SC_ESP_OFF, 0);
ebp_loc = DWARF_LOC (sigcontext_addr + LINUX_SC_EBP_OFF, 0);
eip_loc = DWARF_LOC (sigcontext_addr + LINUX_SC_EIP_OFF, 0);
ret = dwarf_get (&c->dwarf, esp_loc, &c->dwarf.cfa); ret = dwarf_get (&c->dwarf, esp_loc, &c->dwarf.cfa);
if (ret < 0) if (ret < 0)
return 0; return 0;
@ -96,9 +99,8 @@ unw_step (unw_cursor_t *cursor)
if (ret < 0) if (ret < 0)
return ret; return ret;
Debug (14, "[EBP=0x%lx] = 0x%lx\n", Debug (13, "[EBP=0x%x] = 0x%xx\n", DWARF_GET_LOC (c->dwarf.loc[EBP]),
(long) DWARF_GET_LOC (c->dwarf.loc[EBP]), c->dwarf.cfa);
(long) c->dwarf.cfa);
ebp_loc = DWARF_LOC (c->dwarf.cfa, 0); ebp_loc = DWARF_LOC (c->dwarf.cfa, 0);
eip_loc = DWARF_LOC (c->dwarf.cfa + 4, 0); eip_loc = DWARF_LOC (c->dwarf.cfa + 4, 0);