2004-08-17 17:34:28 +02:00
|
|
|
/* libunwind - a platform-independent unwind library
|
|
|
|
Copyright (C) 2003-2004 Hewlett-Packard Co
|
|
|
|
Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
|
|
|
|
|
|
|
|
This file is part of libunwind.
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining
|
|
|
|
a copy of this software and associated documentation files (the
|
|
|
|
"Software"), to deal in the Software without restriction, including
|
|
|
|
without limitation the rights to use, copy, modify, merge, publish,
|
|
|
|
distribute, sublicense, and/or sell copies of the Software, and to
|
|
|
|
permit persons to whom the Software is furnished to do so, subject to
|
|
|
|
the following conditions:
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be
|
|
|
|
included in all copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
|
|
|
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
|
|
|
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
|
|
|
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
|
|
|
|
|
|
/* Logically, we like to think of the stack as a contiguous region of
|
|
|
|
memory. Unfortunately, this logical view doesn't work for the
|
|
|
|
register backing store, because the RSE is an asynchronous engine and
|
|
|
|
because UNIX/Linux allow for stack-switching via sigaltstack(2).
|
|
|
|
Specifically, this means that any given stacked register may or may
|
|
|
|
not be backed up by memory in the current stack. If not, then the
|
|
|
|
backing memory may be found in any of the "more inner" (younger)
|
|
|
|
stacks. The routines in this file help manage the discontiguous
|
|
|
|
nature of the register backing store. The routines are completely
|
|
|
|
independent of UNIX/Linux, but each stack frame that switches the
|
|
|
|
backing store is expected to reserve 4 words for use by libunwind. For
|
|
|
|
example, in the Linux sigcontext, sc_fr[0] and sc_fr[1] serve this
|
|
|
|
purpose. */
|
|
|
|
|
|
|
|
#include "unwind_i.h"
|
|
|
|
|
|
|
|
HIDDEN int
|
|
|
|
rbs_switch (struct cursor *c,
|
|
|
|
unw_word_t saved_bsp, unw_word_t saved_bspstore,
|
|
|
|
ia64_loc_t saved_rnat_loc)
|
|
|
|
{
|
|
|
|
struct rbs_area *rbs = &c->rbs_area[c->rbs_curr];
|
|
|
|
unw_word_t lo, ndirty;
|
|
|
|
|
|
|
|
Debug (10, "(left=%u, curr=%u)", c->rbs_left_edge, c->rbs_curr);
|
|
|
|
|
|
|
|
/* Calculate address "lo" at which the backing store starts: */
|
|
|
|
ndirty = ia64_rse_num_regs (saved_bspstore, saved_bsp);
|
|
|
|
lo = ia64_rse_skip_regs (c->bsp, -ndirty);
|
|
|
|
|
|
|
|
rbs->size = (rbs->end - lo);
|
|
|
|
|
|
|
|
/* If the previously-recorded rbs-area is empty we don't need to
|
|
|
|
track it and we can simply overwrite it... */
|
|
|
|
if (rbs->size)
|
|
|
|
{
|
|
|
|
Debug (10, "inner=[0x%lx-0x%lx)",
|
|
|
|
(long) (rbs->end - rbs->size), (long) rbs->end);
|
|
|
|
|
|
|
|
c->rbs_curr = (c->rbs_curr + 1) % NELEMS (c->rbs_area);
|
|
|
|
rbs = c->rbs_area + c->rbs_curr;
|
|
|
|
|
|
|
|
if (c->rbs_curr == c->rbs_left_edge)
|
|
|
|
c->rbs_left_edge = (c->rbs_left_edge + 1) % NELEMS (c->rbs_area);
|
|
|
|
}
|
|
|
|
rbs->end = saved_bspstore;
|
|
|
|
rbs->size = ((unw_word_t) 1) << 63; /* initial guess... */
|
|
|
|
rbs->rnat_loc = saved_rnat_loc;
|
|
|
|
|
|
|
|
c->bsp = saved_bsp;
|
|
|
|
|
|
|
|
Debug (10, "outer=[?????????????????\?-0x%llx), rnat@%s\n",
|
|
|
|
(long long) rbs->end, ia64_strloc (rbs->rnat_loc));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
HIDDEN int
|
|
|
|
rbs_find_stacked (struct cursor *c, unw_word_t regs_to_skip,
|
|
|
|
ia64_loc_t *locp, ia64_loc_t *rnat_locp)
|
|
|
|
{
|
|
|
|
unw_word_t nregs, bsp = c->bsp, curr = c->rbs_curr, n;
|
|
|
|
unw_word_t left_edge = c->rbs_left_edge;
|
|
|
|
#if UNW_DEBUG
|
|
|
|
int reg = 32 + regs_to_skip;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
while (!rbs_contains (&c->rbs_area[curr], bsp))
|
|
|
|
{
|
|
|
|
if (curr == left_edge)
|
|
|
|
{
|
|
|
|
Debug (1, "could not find register r%d!\n", reg);
|
|
|
|
return -UNW_EBADREG;
|
|
|
|
}
|
|
|
|
|
|
|
|
n = ia64_rse_num_regs (c->rbs_area[curr].end, bsp);
|
|
|
|
curr = (curr + NELEMS (c->rbs_area) - 1) % NELEMS (c->rbs_area);
|
|
|
|
bsp = ia64_rse_skip_regs (c->rbs_area[curr].end - c->rbs_area[curr].size,
|
|
|
|
n);
|
|
|
|
}
|
|
|
|
|
|
|
|
while (1)
|
|
|
|
{
|
|
|
|
nregs = ia64_rse_num_regs (bsp, c->rbs_area[curr].end);
|
|
|
|
|
|
|
|
if (regs_to_skip < nregs)
|
|
|
|
{
|
|
|
|
/* found it: */
|
|
|
|
unw_word_t addr;
|
|
|
|
|
|
|
|
addr = ia64_rse_skip_regs (bsp, regs_to_skip);
|
|
|
|
if (locp)
|
|
|
|
*locp = rbs_loc (c->rbs_area + curr, addr);
|
|
|
|
if (rnat_locp)
|
|
|
|
*rnat_locp = rbs_get_rnat_loc (c->rbs_area + curr, addr);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (curr == left_edge)
|
|
|
|
{
|
|
|
|
Debug (1, "could not find register r%d!\n", reg);
|
|
|
|
return -UNW_EBADREG;
|
|
|
|
}
|
|
|
|
|
|
|
|
regs_to_skip -= nregs;
|
|
|
|
|
|
|
|
curr = (curr + NELEMS (c->rbs_area) - 1) % NELEMS (c->rbs_area);
|
|
|
|
bsp = c->rbs_area[curr].end - c->rbs_area[curr].size;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
get_rnat (struct cursor *c, struct rbs_area *rbs, unw_word_t bsp,
|
|
|
|
ia64_loc_t *__restrict rnat_locp, unw_word_t *__restrict rnatp)
|
|
|
|
{
|
|
|
|
*rnat_locp = rbs_get_rnat_loc (rbs, bsp);
|
|
|
|
return ia64_get (c, *rnat_locp, rnatp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Ensure that the first "nregs" stacked registers are on the current
|
|
|
|
register backing store area. This effectively simulates the effect
|
|
|
|
of a "cover" followed by a "flushrs" for the current frame.
|
|
|
|
|
|
|
|
Note: This does not modify the rbs_area[] structure in any way. */
|
|
|
|
HIDDEN int
|
|
|
|
rbs_cover_and_flush (struct cursor *c, unw_word_t nregs)
|
|
|
|
{
|
|
|
|
unw_word_t src_mask, dst_mask, curr, val, left_edge = c->rbs_left_edge;
|
|
|
|
unw_word_t src_bsp, dst_bsp, src_rnat, dst_rnat, dst_rnat_addr;
|
|
|
|
ia64_loc_t src_rnat_loc, dst_rnat_loc;
|
|
|
|
unw_word_t final_bsp;
|
|
|
|
struct rbs_area *dst_rbs;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (nregs < 1)
|
|
|
|
return 0; /* nothing to do... */
|
|
|
|
|
|
|
|
/* Handle the common case quickly: */
|
|
|
|
|
|
|
|
curr = c->rbs_curr;
|
|
|
|
dst_rbs = c->rbs_area + curr;
|
|
|
|
final_bsp = ia64_rse_skip_regs (c->bsp, nregs); /* final bsp */
|
|
|
|
if (likely (rbs_contains (dst_rbs, final_bsp) || curr == left_edge))
|
|
|
|
{
|
|
|
|
dst_rnat_addr = ia64_rse_rnat_addr (ia64_rse_skip_regs (c->bsp,
|
|
|
|
nregs - 1));
|
|
|
|
if (rbs_contains (dst_rbs, dst_rnat_addr))
|
|
|
|
c->loc[IA64_REG_RNAT] = rbs_loc (dst_rbs, dst_rnat_addr);
|
|
|
|
c->bsp = final_bsp;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Skip over regs that are already on the destination rbs-area: */
|
|
|
|
|
|
|
|
dst_bsp = src_bsp = dst_rbs->end;
|
|
|
|
|
|
|
|
if ((ret = get_rnat (c, dst_rbs, dst_bsp, &dst_rnat_loc, &dst_rnat)) < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* This may seem a bit surprising, but with a hyper-lazy RSE, it's
|
|
|
|
perfectly common that ar.bspstore points to an RNaT slot at the
|
|
|
|
time of a backing-store switch. When that happens, install the
|
|
|
|
appropriate RNaT value (if necessary) and move on to the next
|
|
|
|
slot. */
|
|
|
|
if (ia64_rse_is_rnat_slot (dst_bsp))
|
|
|
|
{
|
|
|
|
if ((IA64_IS_REG_LOC (dst_rnat_loc)
|
|
|
|
|| IA64_GET_ADDR (dst_rnat_loc) != dst_bsp)
|
|
|
|
&& (ret = ia64_put (c, rbs_loc (dst_rbs, dst_bsp), dst_rnat)) < 0)
|
|
|
|
return ret;
|
|
|
|
dst_bsp = src_bsp = dst_bsp + 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (dst_bsp != final_bsp)
|
|
|
|
{
|
|
|
|
while (!rbs_contains (&c->rbs_area[curr], src_bsp))
|
|
|
|
{
|
|
|
|
/* switch to next rbs-area, adjust src_bsp accordingly: */
|
|
|
|
if (curr == left_edge)
|
|
|
|
{
|
|
|
|
Debug (1, "rbs-underflow while flushing %lu regs, "
|
|
|
|
"src_bsp=0x%lx, dst_bsp=0x%lx\n", (unsigned long) nregs,
|
|
|
|
(unsigned long) src_bsp, (unsigned long) dst_bsp);
|
|
|
|
return -UNW_EBADREG;
|
|
|
|
}
|
|
|
|
curr = (curr + NELEMS (c->rbs_area) - 1) % NELEMS (c->rbs_area);
|
|
|
|
src_bsp = c->rbs_area[curr].end - c->rbs_area[curr].size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* OK, found the right rbs-area. Now copy both the register
|
|
|
|
value and its NaT bit: */
|
|
|
|
|
|
|
|
if ((ret = get_rnat (c, c->rbs_area + curr, src_bsp,
|
|
|
|
&src_rnat_loc, &src_rnat)) < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
src_mask = ((unw_word_t) 1) << ia64_rse_slot_num (src_bsp);
|
|
|
|
dst_mask = ((unw_word_t) 1) << ia64_rse_slot_num (dst_bsp);
|
|
|
|
|
|
|
|
if (src_rnat & src_mask)
|
|
|
|
dst_rnat |= dst_mask;
|
|
|
|
else
|
|
|
|
dst_rnat &= ~dst_mask;
|
|
|
|
|
|
|
|
if ((ret = ia64_get (c, rbs_loc (c->rbs_area + curr, src_bsp), &val)) < 0
|
|
|
|
|| (ret = ia64_put (c, rbs_loc (dst_rbs, dst_bsp), val)) < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* advance src_bsp & dst_bsp to next slot: */
|
|
|
|
|
|
|
|
src_bsp += 8;
|
|
|
|
if (ia64_rse_is_rnat_slot (src_bsp))
|
|
|
|
src_bsp += 8;
|
|
|
|
|
|
|
|
dst_bsp += 8;
|
|
|
|
if (ia64_rse_is_rnat_slot (dst_bsp))
|
|
|
|
{
|
|
|
|
if ((ret = ia64_put (c, rbs_loc (dst_rbs, dst_bsp), dst_rnat)) < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
dst_bsp += 8;
|
|
|
|
|
|
|
|
if ((ret = get_rnat (c, dst_rbs, dst_bsp,
|
|
|
|
&dst_rnat_loc, &dst_rnat)) < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
c->bsp = dst_bsp;
|
|
|
|
c->loc[IA64_REG_RNAT] = dst_rnat_loc;
|
|
|
|
return ia64_put (c, dst_rnat_loc, dst_rnat);
|
|
|
|
}
|