compilation-bundle/dwarf-compilation.base/contrib/libdwarf/tsearch/dwarf_tsearchepp.c

571 lines
15 KiB
C
Raw Normal View History

2018-10-23 14:56:04 +02:00
/* Copyright (c) 2013-2017, David Anderson
All rights reserved.
Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the
following conditions are met:
Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* The interfaces follow tsearch (See the Single
Unix Specification) but the implementation is
written without reference to the source of any
version of tsearch.
See http://www.prevanders.net/tsearch.html
for information and an example of use.
Based on Knuth, chapter 6.2.2, algorithm T and
Algorithm D.
Algorithm D here is with Eppinger's left/right reflection
in delete (J L Eppinger CACM26 (1983),663-669, 27 (1984),235).
*/
#include "config.h"
#include "dwarf_incl.h"
#include "stdlib.h" /* for free() */
#include <stdio.h> /* for printf */
#include "dwarf_tsearch.h"
/* INVARIANT: The head node has no user data.
head->llink is null, head->rlink points to the real user
top node (root of the user tree).
So the physical top node we call 'head'. No user data.
The user top node we call 'root' here. It has a user key.
Though we intend that head->rlink be non-NULL
except briefly when a tdelete removes the last
node (in which case we remove the head too before
returning) the code is a bit cautious and tests
for a non-NULL head->rlink.
*/
struct ts_entry {
/* Keyptr points to a pointer to a record the user saved, the
user record contains the user's key itself
and perhaps more. */
const void *keyptr;
struct ts_entry * llink;
struct ts_entry * rlink;
};
/* Not needed for this set of functions. */
void *
dwarf_initialize_search_hash( void **treeptr,
DW_TSHASHTYPE(*hashfunc)(const void *key),
unsigned long size_estimate)
{
return *treeptr;
}
/* For debugging. Prints the level number and indents 1 space
per level. That won't work very well for a deep tree, so perhaps
we should clamp at some number of indent spaces? */
static void printlevel(int level)
{
int len = 0;
int targetlen = 4 + level;
int shownlen = 0;
char number[10];
len = snprintf(number,sizeof(number),"<%d>",level);
printf("%s",number);
shownlen = len;
while(shownlen < targetlen) {
putchar(' ');
++shownlen;
}
}
/* For debugging */
static void
dumptree_inner(const struct ts_entry *t,
char *(* keyprint)(const void *),
const char *descr, int level)
{
char *v = "";
if(!t) {
return;
}
dumptree_inner(t->rlink,keyprint,"left ",level+1);
if(t->keyptr) {
v = keyprint(t->keyptr);
}
printlevel(level);
printf("0x%08x <keyptr 0x%08x> <%s %s> <l 0x%08x> <r 0x%08x> %s\n",
(unsigned)t,
(unsigned)t->keyptr,
t->keyptr?"key ":"null",
v,
(unsigned)t->llink,(unsigned)t->rlink,
descr);
dumptree_inner(t->llink,keyprint,"right",level+1);
}
static struct ts_entry*
getlink(struct ts_entry*t,int a)
{
if(a < 0) {
return(t->llink);
}
return(t->rlink);
}
/* Dumping the tree to stdout. */
void
dwarf_tdump(const void*rootin,
char *(* keyprint)(const void *),
const char *msg)
{
const struct ts_entry *head = (const struct ts_entry *)rootin;
const struct ts_entry *root = 0;
if(!head) {
printf("dwarf_tdump null tree ptr : %s\n",msg);
return;
}
root = head->rlink;
if(!root) {
printf("dwarf_tdump empty tree : %s\n",msg);
return;
}
printf("dwarf_tdump tree head : 0x%08lx %s\n",(unsigned long)head,msg);
printf("dwarf_tdump tree root : 0x%08lx %s\n",(unsigned long)root,msg);
dumptree_inner(root,keyprint,"top",0);
}
static struct ts_entry *
allocate_ts_entry(const void *key)
{
struct ts_entry *e = (struct ts_entry *)
malloc(sizeof(struct ts_entry));
if(!e) {
return NULL;
}
e->keyptr = key;
e->llink = 0;
e->rlink = 0;
return e;
}
/* Knuth step T5, the insert. */
static struct ts_entry *
tsearch_insert_k(const void *key,int kc,
struct ts_entry *p)
{
struct ts_entry *e = allocate_ts_entry(key);
if (!e) {
/* out of memory */
return NULL;
}
if( kc < 0) {
p->llink = e;
} else {
p->rlink = e;
}
/* Non-NULL means inserted. */
return e;
}
/* Knuth step T5. */
static struct ts_entry *
tsearch_inner_do_insert(const void *key,
int kc,
int * inserted,
struct ts_entry* p)
{
struct ts_entry *q = 0;
q = tsearch_insert_k(key,kc,p);
if(q) {
*inserted = 1;
}
return q;
}
/* Algorithm T of Knuth 6.2.2.2
key is pointer to a user data area containing the key
and possibly more.
We iterate like Knuth does, but using for(;;) instead
of go-to. */
static struct ts_entry *
tsearch_inner( const void *key, struct ts_entry* localrootp,
int (*compar)(const void *, const void *),
int*inserted)
{
struct ts_entry* p = localrootp;
for(;;) {
struct ts_entry *r = 0;
/* T2. */
int kc = compar(key,p->keyptr);
if(kc < 0) {
/* T3. */
struct ts_entry *l = p->llink;
if (l) {
p = l;
continue;
}
/* T5 */
r = tsearch_inner_do_insert(key,kc,inserted,p);
return r;
} else if (kc > 0 ) {
/* T4. */
struct ts_entry *r2 = p->rlink;
if (r2) {
p = r2;
continue;
}
/* T5 */
r = tsearch_inner_do_insert(key,kc,inserted,p);
return r;
}
/* K = KEY(P) in Knuth. */
/* kc == 0, we found the entry we search for. */
return p;
}
return 0;
}
/* Search and, if missing, insert. */
void *
dwarf_tsearch(const void *key, void **headpin,
int (*compar)(const void *, const void *))
{
struct ts_entry *head = 0;
struct ts_entry *root = 0;
struct ts_entry *r = 0;
int inserted = 0;
if(!headpin) {
return NULL;
}
head = (struct ts_entry *)*headpin;
if(head) {
root = head->rlink;
}
if(!head || !root) {
int allocatedhead = 0;
if(!head) {
head = allocate_ts_entry(0);
allocatedhead = 1
}
if(!head) {
return NULL;
}
root = allocate_ts_entry(key);
if(!root) {
if (allocatedhead) {
free(head);
}
return NULL;
}
head->rlink = root;
*headpin = head;
return (void *)(&(root->keyptr));
}
root = head->rlink;
r = tsearch_inner(key,root,compar,&inserted);
if (!r) {
return NULL;
}
/* Was this found or inserted?
Value is the same either way, but the pointer to return
is not the same! */
/* Discards const. Required by the interface definition. */
return (void *)&(r->keyptr);
}
/* Search. */
void *
dwarf_tfind(const void *key, void *const*headppin,
int (*compar)(const void *, const void *))
{
struct ts_entry *head = (struct ts_entry *)*headppin;
struct ts_entry **proot = 0;
struct ts_entry *root = 0;
struct ts_entry *p = 0;
if(!headppin) {
return NULL;
}
head = (struct ts_entry *)*headppin;
if(!head) {
return NULL;
}
proot = &head->rlink;
root = *proot;
if(!root) {
return NULL;
}
p = root;
while(p) {
int kc = compar(key,p->keyptr);
if (!kc) {
return (void *)&(p->keyptr);
}
p = getlink(p,kc);
}
return NULL;
}
void *
dwarf_tdelete(const void *key, void **headin,
int (*compar)(const void *, const void *))
{
struct ts_entry *phead = 0;
struct ts_entry **rootp = 0;
struct ts_entry *root = 0;
struct ts_entry * p= 0;
/* If a leaf is found, we have to null a parent link
or the root */
struct ts_entry * parentp = 0;
int parentcomparv = 0;
int done = 0;
/* We don't really care much if multiple tree
tables use this simultaneously. This left/right
is a practical thing not supported by known theory,
according to Knuth.
We start with eppingerleftr=1 because that happens to
show a different tree than standard knuth
in one of our standard tsearch regression test sequences.
*/
static unsigned eppingerleft = 1;
if (!headin) {
return NULL;
}
phead = (struct ts_entry *)*headin;
if (!phead) {
return NULL;
}
rootp = &phead->rlink;
root = phead->rlink;
if (!root) {
return NULL;
}
p = root;
while(p) {
int kc = compar(key,p->keyptr);
if (!kc) {
break;
}
parentp = p;
parentcomparv = kc;
p = getlink(p,kc);
}
if(!p) {
return NULL;
}
{
struct ts_entry **q = 0;
struct ts_entry *t = 0;
struct ts_entry *s = 0;
int emptied_a_leaf = 0;
/* Either we found root (to remove) or we
have a parentp and the parent mismatched the key so
parentcomparv is != 0 */
if (p == root) {
q = rootp;
} else if (parentcomparv < 0) {
q = &parentp->llink;
} else /* (parentcomparv > 0) */ {
q = &parentp->rlink;
}
/* D1. *q is what Knuth calls q. */
t = *q;
if(!eppingerleft) {
struct ts_entry *r = 0;
eppingerleft = 1;
r = t->rlink;
if (!r) {
*q = t->llink;
done = 1;
} else {
/* D2. */
if (!r->llink) {
r->llink = t->llink;
*q = r;
done = 1;
}
}
while (!done) {
/* D3. */
s = r->llink;
if(s->llink) {
r = s;
continue;
}
s->llink = t->llink;
r->llink = s->rlink;
s->rlink = t->rlink;
*q = s;
done = 1;
}
} else {
struct ts_entry *l = 0;
eppingerleft = 0;
l = t->llink;
if (!l) {
*q = t->rlink;
done = 1;
} else {
/* D2. */
if (!l->rlink) {
l->rlink = t->rlink;
*q = l;
done = 1;
}
}
while (!done) {
/* D3. */
s = l->rlink;
if(s->rlink) {
l = s;
continue;
}
s->rlink = t->rlink;
l->rlink = s->llink;
s->llink = t->llink;
*q = s;
done = 1;
}
}
/* Step D4. */
if(!t->llink && !t->rlink) {
emptied_a_leaf = 1;
}
free(t);
if(emptied_a_leaf) {
if (p == root) {
/* The tree is completely empty now.
Free the special head node.
Notify the caller. */
free(phead);
*headin = 0;
return NULL;
}
}
if(!parentp) {
/* The item we found was at top of tree,
found == root.
We have a new root node.
We return it, there is no parent. */
return (void *)(&(root->keyptr));
}
return (void *)(&(parentp->keyptr));
}
return NULL;
}
static void
dwarf_twalk_inner(const struct ts_entry *p,
void (*action)(const void *nodep, const DW_VISIT which, const int depth),
unsigned level)
{
if (!p->llink && !p->rlink) {
action((const void *)(&(p->keyptr)),dwarf_leaf,level);
return;
}
action((const void *)(&(p->keyptr)),dwarf_preorder,level);
if(p->llink) {
dwarf_twalk_inner(p->llink,action,level+1);
}
action((const void *)(&(p->keyptr)),dwarf_postorder,level);
if(p->rlink) {
dwarf_twalk_inner(p->rlink,action,level+1);
}
action((const void *)(&(p->keyptr)),dwarf_endorder,level);
}
void
dwarf_twalk(const void *headin,
void (*action)(const void *nodep, const DW_VISIT which, const int depth))
{
const struct ts_entry *head = (const struct ts_entry *)headin;
const struct ts_entry *root = 0;
if(!head) {
return;
}
root = head->rlink;
if(!root) {
return;
}
dwarf_twalk_inner(root,action,0);
}
static void
dwarf_tdestroy_inner(struct ts_entry*p,
void (*free_node)(void *nodep),
int depth)
{
if(p->llink) {
dwarf_tdestroy_inner(p->llink,free_node,depth+1);
p->llink = 0;
}
if(p->rlink) {
dwarf_tdestroy_inner(p->rlink,free_node,depth+1);
p->rlink = 0;
}
/* Discards const. Required by the interface definition. */
free_node((void *)p->keyptr);
free(p);
}
/* Walk the tree, freeing all space in the tree
and calling the user's callback function on each node.
The user must zero out the head node, we have no
way to do that in the defined interface.
*/
void
dwarf_tdestroy(void *headin, void (*free_node)(void *nodep))
{
struct ts_entry *head = (struct ts_entry *)headin;
struct ts_entry *root = 0;
if(!head) {
return;
}
root = head->rlink;
if(head) {
dwarf_tdestroy_inner(root,free_node,0);
}
free(head);
}