\chapter*{Notations} \addcontentsline{toc}{chapter}{Notations} Throughout this whole document, the following non-standard notations are used. \begin{center} \begin{tabular}{c p{0.65\columnwidth} >{\raggedright\arraybackslash}p{0.15\columnwidth}} \toprule \textbf{Notation} & \textbf{Meaning} & \textbf{(See also)} \\ \midrule $\cyc{\kerK}$ & Reciprocal throughput of $\kerK$, in cycles per occurrence of $\kerK$. & §\ref{def:cyc_kerK} \\ $\cycmes{\kerK}{n}$ & Measured reciprocal throughput of $\kerK$, over $n$ iterations of $\kerK$. When there is no ambiguity and $n$ is sufficiently large, we often write $\cyc{\kerK}$ instead. & §\ref{def:cycmes_kerK} \\ $\cycB{\kerK}$ & Reciprocal throughput of $\kerK$ if it was only limited by the CPU's backend. & §\ref{def:cycB} \\ $\cycF{\kerK}$ & Reciprocal throughput of $\kerK$ if it was only limited by the CPU's frontend. & §\ref{def:cycF} \\ $C(\kerK)$ & Number of cycles of a kernel $\kerK$. & §\ref{def:ker_cycles} \\ $\kerK^n$ & $\kerK$ repeated $n$ times. & §\ref{not:kerK_N} \\ $\operatorname{IPC}(\kerK)$ & Instructions Per Cycle in the execution of the kernel $\kerK$, in steady state, averaged. & §\ref{def:ipc} \\ $\mucount{}i$ & Number of \uops{} the instruction $i$ is decoded into. This can be extended to a kernel: $\mucount{}\kerK$. & §\ref{def:mucount} \\ $\tau_K$ & Kendall's $\tau$ coefficient of correlation. & §\ref{ssec:palmed_eval_metrics}, \cite{kendalltau} \\ \bottomrule \end{tabular} \end{center}