#include "MarchingCubes.hpp" #include const std::vector MarchingCubes::edges_of_intersection[256] = { }; MarchingCubes::MarchingCubes( const ImplicitSurface& surface, const Cuboid& box, double resolution): surface(surface), box(box), resolution(resolution) {} void MarchingCubes::add_hint(const Cuboid& hint) { hints.push_back(hint); } Mesh MarchingCubes::operator()() { Mesh output; for(double x = box.low(0); x < box.high(0) + resolution; x += resolution) { for(double y = box.low(1); y < box.high(1) + resolution; y += resolution) { for(double z = box.low(2); z < box.high(2) + resolution; z += resolution) { Intersections intersections; /* ===== * NOTE: this code currently computes 8 times the surface value * at each corner point of the inspected space. This is okay * for now, because such computations are ultra light and * actually better than storing values. * If a time comes when this computation is heavier, because we * are looking at more complex implicit surfaces, * IT WILL BE NECESSARY TO ENHANCE THIS CODE! * ==== */ for(int dx=0; dx <= 1; dx++) { for(int dy=0; dy <= 1; dy++) { for(int dz=0; dz <= 1; dz++) { double cx = x + resolution * dx; double cy = y + resolution * dy; double cz = z + resolution * dz; intersections.set_corner(cx, cy, cz, surface(cx, cy, cz) > 0); } } } const std::vector& cur_triangles = edges_of_intersection[intersections.value()]; // TODO } } } return output; } Point MarchingCubes::CubeEdge::at(double pos, double bx, double by, double bz, double resolution) const { Point p1( bx + x[0] * resolution, by + y[0] * resolution, bz + z[0] * resolution); Point p2( bx + x[1] * resolution, by + y[1] * resolution, bz + z[1] * resolution); return Point( 0.5 * (p1.x + p2.x), 0.5 * (p1.y + p2.y), 0.5 * (p1.z + p2.z)); } Point MarchingCubes::intersect_location(const CubeEdge& edge, double bx, double by, double bz) const { Point p1 = edge.at(0, bx, by, bz, resolution); Point p2 = edge.at(1, bx, by, bz, resolution); std::function compute = [&](double low_prop, double high_prop) { double med_prop = (low_prop + high_prop) / 2; Point med = edge.at(med_prop, bx, by, bz, resolution); if(high_prop - low_prop < 1e-8) return med; assert(surface(p1) * surface(p2) <= 0); // Can still binary search if(surface(p1) * surface(med) <= 0) return compute(low_prop, med_prop); return compute(med_prop, high_prop); }; return compute(0, 1); }