François Pottier

[Reduction](#page-3-0) strategies

MPRI 2.4

Operational semantics and reduction strategies

François Pottier

2017

The λ -calculus

The formal model that underlies all functional programming languages. Abstract syntax:

 $t, u ::= x | \lambda x.t | t t$ (terms)

Reduction:

MPRI 2.4 **[Semantics](#page-0-0)** François **Pottier**

$$
(\lambda x.t)\; u\longrightarrow [u/x]t \qquad (\beta)
$$

Mnemonic: read $[u/x]t$ as "substitute u for x in t".

Landin, [Correspondence betw. ALGOL 60 and Church's](http://doi.acm.org/10.1145/363744.363749) λ-notation, 1965.

Francois Pottier

From the λ -calculus to a functional programming language

Start from the λ -calculus, and follow several steps:

- Fix a reduction strategy (today).
- Develop efficient execution mechanisms (next week).
- Enrich the language with primitive data types and operations, recursion, algebraic data structures, and so on (next week).
- Define a static type system (Rémy's lectures).

François Pottier

[Reduction](#page-3-0) strategies

1 [Reduction strategies](#page-3-0)

François **Pottier**

[Reduction](#page-3-0) strategies

Operational semantics

Plotkin: — It is only through having an operational semantics that the $[\lambda$ -calculus can] be viewed as a programming language.

Scott: — Why call it operational semantics? What is operational about it?

An operational semantics describes the actions of a machine, in the simplest possible manner / at the most abstract level.

Plotkin, [A Structural Approach to Operational Semantics,](http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf) 1981, (2004). Plotkin, [The Origins of Structural Operational Semantics,](http://homepages.inf.ed.ac.uk/gdp/publications/Origins_SOS.pdf) 2004.

François **Pottier**

[Reduction](#page-3-0) strategies

The call-by-value strategy

Values form a subset of terms:

 t, u ::= $x | \lambda x. t | t t$ (terms) $v := x | \lambda x.t$ (values)

A value represents the result of a computation.

The call-by-value reduction relation $t \longrightarrow_{\text{cbv}} t'$ is inductively defined:

$$
\frac{\beta_{v}}{(\lambda x.t) v \longrightarrow_{cbv} [v/x]t} \qquad \frac{\text{APPL}}{t u \longrightarrow_{cbv} t'} \qquad \frac{\text{APPVR}}{v u \longrightarrow_{cbv} u'}
$$

This is known as a small-step operational semantics.

Example

MPRI 2.4 **[Semantics](#page-0-0)**

François Pottier

[Reduction](#page-3-0) strategies

This is a proof (a.k.a. derivation) that one reduction step is permitted:

$$
\frac{[x/1]x = 1}{(\lambda x.x) 1 \longrightarrow_{cbv} 1} \beta_v
$$

$$
\frac{(\lambda x.\lambda y.y x) ((\lambda x.x) 1) \longrightarrow_{cbv} (\lambda x.\lambda y.y x) 1}{(\lambda x.\lambda y.y x) ((\lambda x.x) 1) (\lambda x.x) \longrightarrow_{cbv} (\lambda x.\lambda y.y x) 1 (\lambda x.x)} \text{APPL}
$$

Francois Pottier

[Reduction](#page-3-0) strategies

Features of call-by-value reduction

• Weak reduction. One cannot reduce under a λ -abstraction.

Thus, values do not reduce.

Also, we are interested in reducing closed terms only.

• Call-by-value. An actual argument is reduced to a value before it is passed to a function.

$$
(\lambda x.t) \mathbf{v} \longrightarrow_{\text{cbv}} [\mathbf{v}/x]t
$$

François **Pottier**

[Reduction](#page-3-0) strategies

Features of call-by-value reduction

• Left-to-right. In an application t u , the term t must be reduced to a value before u can be reduced at all.

$$
\begin{array}{c}\n\text{APPVR} \\
U \longrightarrow_{\text{cbv}} U' \\
\hline\nV U \longrightarrow_{\text{cbv}} V U'\n\end{array}
$$

• Determinism. For every term t , there is at most one term t' such that $t \longrightarrow_{\text{cbv}} t'$ holds.

Reduction sequences

Sequences of reduction steps describe the behavior of a term.

The three following situations are mutually exclusive:

MPRI 2.4 **[Semantics](#page-0-0) Francois Pottier [Reduction](#page-3-0)** strategies

- Termination: $t \rightarrow_{\text{cbv}} t_1 \rightarrow_{\text{cbv}} t_2 \rightarrow_{\text{cbv}} ... \rightarrow_{\text{cbv}} v$ The value v is the result of evaluating t . The term t converges to v .
- Divergence: $t \rightarrow_{\text{cbv}} t_1 \rightarrow_{\text{cbv}} t_2 \rightarrow_{\text{cbv}} \ldots \rightarrow_{\text{cbv}} t_n \rightarrow_{\text{cbv}} \ldots$ The sequence of reductions is infinite. The term t diverges.
- Error: $t \rightarrow_{\text{chv}} t_1 \rightarrow_{\text{chv}} t_2 \rightarrow_{\text{chv}} \ldots \rightarrow_{\text{chv}} t_n \rightarrow_{\text{chv}}$ where t_n is not a value, yet does not reduce: t_n is stuck. The term t goes wrong.

François **Pottier**

[Reduction](#page-3-0) strategies

Examples of reduction sequences

Termination:

$$
(\lambda x.\lambda y.y x) ((\lambda x.x) 1) (\lambda x.x) \longrightarrow_{cbv} (\lambda x.\lambda y.y x) 1 (\lambda x.x) \longrightarrow_{cbv} (\lambda y.y 1) (\lambda x.x) \longrightarrow_{cbv} (\lambda x.x) 1
$$

\n
$$
\longrightarrow_{cbv} (\lambda x.x) 1
$$

Divergence:

$$
(\lambda x. x x) (\lambda x. x x) \longrightarrow_{cbv} (\lambda x. x x) (\lambda x. x x) \longrightarrow_{cbv} \dots
$$

Error:

$$
(\lambda x.x x) 2 \longrightarrow_{\text{cbv}} 2 2 \longrightarrow_{\text{cbv}}.
$$

The active redex is highlighted in red.

Francois Pottier

[Reduction](#page-3-0) strategies

An alternative style: evaluation contexts

First, define head reduction:

$$
\frac{\beta_v}{(\lambda x.t) v \longrightarrow_{\text{cbv}}^{\text{head}} [v/x]t}
$$

Then, define reduction as head reduction under an evaluation context:

where evaluation contexts E are defined by $E ::= \{ | \mid E \ u | v E$.

Wright and Felleisen, [A syntactic approach to type soundness,](http://ecee.colorado.edu/ecen5533/fall11/reading/wright-syntactic.pdf) 1992.

François Pottier

[Reduction](#page-3-0) strategies

Unique decomposition

In this alternative style, the determinism of the reduction relation follows from a unique decomposition theorem:

Theorem (Unique Decomposition)

For every term t, there exists at most one pair (E, u) such that $t = E[u]$ and $u \longrightarrow_{cbv}^{head}$.

François **Pottier**

[Reduction](#page-3-0) strategies

The call-by-name strategy

The call-by-name reduction relation $t \longrightarrow_{\text{cbn}} t'$ is defined as follows:

$$
\frac{\beta}{(\lambda x.t) u \longrightarrow_{\text{cbn}} [u/x]t} \qquad \frac{A \text{PPL}}{t u \longrightarrow_{\text{cbn}} t' u}
$$

The unevaluated actual argument is passed to the function.

It is later reduced if / when / every time the function body needs its value.

 \longrightarrow_{cbn} 1

Francois Pottier

[Reduction](#page-3-0) strategies

Call-by-value versus call-by-name

If t terminates under CBV, then it also terminates under CBN $(*)$. The converse is false:

$$
(\lambda x.1) \omega \longrightarrow_{\text{cbn}} 1 (\lambda x.1) \omega \longrightarrow_{\text{cbv}}^{\infty} 1
$$

where $\omega = (\lambda x.x) (\lambda x.x)$ diverges under both strategies.

Call-by-value can perform fewer reduction steps: $(\lambda x. x + x)$ t evaluates t once under CBV, twice under CBN.

Call-by-name can perform fewer reduction steps: $(\lambda x. 1)$ t evaluates t once under CBV, not at all under CBN.

> (?) In fact, the standardization theorem implies that if t can be reduced to a value via any strategy, then it can be reduced to a value via CBN. See [Takahashi \(1995\).](http://dx.doi.org/10.1006/inco.1995.1057)

François **Pottier**

[Reduction](#page-3-0) strategies

Encoding call-by-name in a CBV language

Use thunks: functions λ . u whose purpose is to delay the evaluation of u.

$$
\begin{array}{rcl}\n\llbracket x \rrbracket & = & x \ () \\
\llbracket \lambda x.t \rrbracket & = & \lambda x. \llbracket t \rrbracket \\
\llbracket t \ u \rrbracket & = & \llbracket t \rrbracket \ (\lambda _ \llbracket u \rrbracket)\n\end{array}
$$

Exercise: Can you state that this encoding is correct? Can you prove it? In a simply-typed setting, this transformation is type-preserving: that is, $\Gamma \vdash t : \mathcal{T}$ implies $\llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket \mathcal{T} \rrbracket$, where

$$
\llbracket T_1 \to T_2 \rrbracket = (\text{unit} \to \llbracket T_1 \rrbracket) \to \llbracket T_2 \rrbracket
$$

François Pottier

[Reduction](#page-3-0) strategies

Encoding call-by-value in a CBN language

This is somewhat more involved.

The call-by-value continuation-passing style (CPS) transformation, studied later on in this course, achieves this.

Call-by-need

MPRI 2.4 **[Semantics](#page-0-0)**

François **Pottier**

[Reduction](#page-3-0) strategies

> Call-by-need, also known as lazy evaluation, eliminates the main inefficiency of call-by-name (namely, possibly repeated computation) by introducing memoization.

It, too, can be defined via an operational semantics [\(Ariola and Felleisen, 1997;](http://repository.readscheme.org/ftp/papers/plsemantics/felleisen/jfp96-af.pdf) [Maraist, Odersky, Wadler, 1998\)](https://doi.org/10.1017/S0956796898003037).

It is used in Haskell, where it encourages a modular style of programming.

Hughes, [Why functional programming matters,](https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf) 1990.

François **Pottier**

[Reduction](#page-3-0) strategies

Encoding call-by-need in a CBV language

Call-by-need can be encoded into CBV by using memoizing thunks:

$$
\begin{array}{rcl}\n\llbracket x \rrbracket & = & \text{force } x \\
\llbracket \lambda x.t \rrbracket & = & \lambda x. \llbracket t \rrbracket \\
\llbracket t u \rrbracket & = & \llbracket t \rrbracket \text{ (suspend } (\lambda _\cdot \llbracket u \rrbracket))\n\end{array}
$$

"suspend $(\lambda \cdot u)$ " is written $\text{lazy } u$ in OCaml.

```
"force x" is written Lazy.force x.
```
Such a thunk evalutes u when first forced, then memoizes the result,

so no computation is required if the thunk is forced again.