

Equationa reasoning

Inlinin

Call-patter specialization

Deforestation

A direct approach Shortcut deforestation

Stream fusio

Deriving, transforming, optimizing programs

MPRI 2.4

François Pottier

Informatics mathematics

2017

An old dream:

- write high-level, abstract, modular code;
- let the compiler produce low-level, efficient code.

"Zero-cost abstraction". (A C++/Rust slogan.)

(Pure) functional prog. languages should lend themselves well to this idea.

- No mutable state. Aliasing not a danger.
 Syntactically obvious where each variable receives its value.
- Equational reasoning.
 Programs denote values. Replace equals with equals.
- Simple, rich language.
 Many transformations easily expressed as rewriting rules.

Perhaps not quite true (do need side effects in some form), but let's see.

Equational reasoning

Inlinin

Call-patt specializ tion

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

6 Conclusion

Equational reasoning

Inlinin

Call-patte specializa

A direct approach Shortcut deforestatio Stream fusion

Equational reasoning

If two terms t_1 and t_2 are observationally equivalent, and if we have reason to believe that t_2 is more efficient than t_1 ,

• or that this rewriting step will enable further optimizations, then we can optimize a program by replacing t_1 with t_2 .

Equational reasoning

Call-patte

A direct approach Shortcut deforestation

In a a pure & total language, such as Coq, a term is equal to its value.

Two terms that have the same value are equal.

Equal terms are interchangeable – Leibniz's Principle.

Life in an ideal (mathematical) world. See DemoEqReasoning.

Equational reasoning

Inlinir

Call-patte specialization

A direct approach Shortcut deforestation Stream fusion

Observational equivalence

Fix some notion of "success", e.g. *t* succeeds iff *t* computes 42.

Note that this notion depends on the evaluation strategy.

With respect to this notion of success, or "observation",

 t_1 and t_2 are observationally equivalent ($t_1 \simeq t_2$) iff, for every (well-typed) context C,

 $C[t_1]$ succeeds if and only if $C[t_2]$ succeeds.

Equational reasoning

Inlinin

Call-patte specialization

eforestatio

A direct approach Shortcut deforestation Stream fusion

Conclusion

When is a rewriting step valid?

Is full β a valid law?

$$(\lambda x.t_2)\ t_1 \simeq t_2[t_1/x]$$

Equational reasoning

Inlinir

Call-patte specializa tion

Deforestation

A direct
approach
Shortcut
deforestation
Stream fusion

When is a rewriting step valid?

Is full β a valid law?

$$(\lambda x.t_2)\ t_1\simeq t_2[t_1/x]$$

In a pure & total language, such as Coq, yes. Part of definitional equality.

Under call-by-name, even in the presence of non-termination, yes.

Under call-by-value, in the presence of non-termination or other side effects, no.

Equational reasoning

Inlinin

Call-patte specialization

A direct approach Shortcut deforestation Stream fusion

Conclusio

full β is invalid under call-by-value

Repeat after me:

full β is invalid under call-by-value full β is invalid under call-by-value full β is invalid under call-by-value

After 20+ years, I keep making this mistake from time to time!

 $(\lambda x.t_2)$ t_1 cannot be "simplified" to $t_2[t_1/x]$ let $x=t_1$ in t_2 cannot be "simplified" to $t_2[t_1/x]$

Under call-by-value, in the presence of side effects, full β is invalid.

One must restrict it to the case where t_1 is pure.

$$(\lambda x.t_2) t_1 \longrightarrow t_2[t_1/x]$$
 provided t_1 is pure

Roughly, a closed term t is pure if there exists a value v such that t reduces to v, independently of the store.

Whether a non-closed term t is closed depends on purity hypotheses about its free variables. E.g., is "f x" pure? Yes, IF f has no side effects.

As a simple special case, one can use β_v , which is valid:

$$(\lambda x.t_2) v_1 \longrightarrow t_2[v_1/x]$$

This follows from the theory of parallel reduction.

See LambdaCalculusStandardization/pcbv adequacy.

Equational reasoning

Inlining

Call-patte specializa tion

Deforestation

A direct approach Shortcut deforestation

Stream fusion

When is a rewriting step profitable?

When it is valid, is full β a profitable optimization?

$$(\lambda x.t_2)\ t_1 \longrightarrow t_2[t_1/x]$$

When it is valid, is full β a profitable optimization?

$$(\lambda x.t_2) t_1 \longrightarrow t_2[t_1/x]$$

Under call-by-name, it is safe for time and space, but can increase code size.

Under call-by-need, if x has multiple occurrences in t_2 , or if x occurs under a λ within t_2 , then the right-hand side risks repeating the computation of t_1 , wasting time and space. This danger exists even if t_1 is a value!

In short, this optimization step seems profitable when x is used "at most once" in t_2 , for a suitable definition of this notion.

Turner, Wadler, Mossin, Once upon a type, 1995.

Peyton Jones, Santos, A transformation-based optimiser for Haskell, 1997.

A proposed rewriting rule $t_1 \longrightarrow t_2$ is valid if $t_1 \simeq t_2$ holds.

 This is influenced by the evaluation strategy, the presence or absence of side effects, and type hypotheses.

A proposed rewriting rule $t_1 \longrightarrow t_2$ may or may not be profitable.

 This is influenced by many factors, including further optimizations and transformations. So far, I have discussed full β versus β_v .

If the language has a primitive construct, then an analogous discussion applies to "full let" versus let_{ν} .

let
$$x = t_1$$
 in $t_2 \longrightarrow t_2[t_1/x]$
let $x = v_1$ in $t_2 \longrightarrow t_2[v_1/x]$

reasoning

Equational

η -reduction and η -expansion

Is this optimization valid?

$$\lambda x.t \ x \simeq t$$
 provided $x \notin fv(t)$

In a pure & total language, such as Cog, yes. Part of definitional equality.

Under call-by-name, in the presence of non-termination, I think it is...

Under call-by-value, in the presence of side effects, it definitely isn't.

When it is valid, is it profitable? Possibly, E.g., after a naïve CPS transformation, η -reduction turns $\lambda x.k$ x into k, which amounts to tail call optimization.

Yet η -reduction can be costly and η -expansion can be profitable. Tricky!

Inlining

- 2 Inlining and simplification
- 3 Call-pattern specialization

Inlining is the action of replacing a call to a known function with the suitably instantiated body of this function.

So, is inlining just another name for β_{v} ?

$$(\lambda x.t_2)\ v_1 \longrightarrow t_2[v_1/x]$$

No. Inlining can be more accurately described by several rewriting rules:

Looking up a definition: (IR1)
$$let \ x = v \text{ in } C[x] \longrightarrow let \ x = v \text{ in } C[v] \quad \text{if } x \notin bv(C)$$
Eliminating dead code: (IR2)
$$let \ x = v \text{ in } t \longrightarrow t \quad \text{if } x \notin fv(t)$$
Binding formals to actuals: (IR3)
$$(\lambda x.t_0) \ t_1 \longrightarrow let \ x = t_1 \text{ in } t_2$$

These rules are valid under every strategy and in the face of side effects.

Rule IR1 works for every value v, not just λ -abstractions.

Rules IR1 and IR2 work for "let rec", too!

Rule IR1 duplicates v and can cause non-termination at compile-time (!) or an explosion in code size.

Equationa

Inlining

Call-patte specializa tion

Deforestation A direct

Shortcut deforestation Stream fusion

Conclusio

Simplification rules

A few additional simplification rules are useful:

Eliminating an alias: (SR1)
let
$$y = x$$
 in $t \longrightarrow t[x/y]$
Hoisting a binding: (SR2)
 $E[\text{let } x = t_1 \text{ in } t_2] \longrightarrow \text{let } x = t_1 \text{ in } E[t_2]$

These rules are valid under every strategy and in the face of side effects.

Equationa

Inlining

Call-patte specializa tion

A direct approach Shortcut deforestatio Example

Consider this tiny example:

```
let succ x = x + 1
let even x = x mod 2 = 0
let test x = even (succ x)
```

This could be call-by-value (OCaml) or call-by-need (Haskell).

Equationa

Inlining

Call-patte specializa tion

Deforestation
A direct
approach
Shortcut
deforestation

Conclusion

```
Example, continued
```

```
let succ x = x + 1
let even x = x mod 2 = 0
let test x = even (succ x)
```

Inlining succ and even (IR1, applied twice) yields:

```
let succ x = x + 1
let even x = x \mod 2 = 0
let test x = (fun x \rightarrow x \mod 2 = 0) ((fun x \rightarrow x + 1) x)
```

Inlining

Call-patter specialization

Deforestation

A direct approach

Shortcut deforestation

Stream fusion

Example, continued

```
let succ x = x + 1
let even x = x \mod 2 = 0
let test x = (\text{fun } x \rightarrow x \mod 2 = 0) ((\text{fun } x \rightarrow x + 1) x)
```

Eliminating dead code (IR2, applied twice) yields:

```
let test x = (fun x \rightarrow x mod 2 = 0) ((fun x \rightarrow x + 1) x)
```

Inlining

```
Example, continued
```

```
let test x = (fun x \rightarrow x mod 2 = 0) ((fun x \rightarrow x + 1) x)
```

Binding (IR3) yields:

```
let test x = (fun x \rightarrow x mod 2 = 0) (let x = x in x + 1)
```


Equationa reasoning

Inlining

Call-patte specializa tion

A direct approach Shortcut deforestation

Stream fusio

Conclusion

```
Example, continued
```

```
let test x = (fun x \rightarrow x mod 2 = 0) (let x = x in x + 1)
Renaming (SR1) yields:
```

```
let test x = (\text{fun } x \rightarrow x \text{ mod } 2 = 0) (x + 1)
```

Example, continued

```
let test x = (fun x -> x mod 2 = 0) (x + 1)
```

Binding (IR3) yields:

```
let test x =
  let x = x + 1 in
  x mod 2 = 0
```


Equation

Inlining

Call-patte specializa tion

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Conclusio

```
Example, continued
```

```
let test x =
  let x = x + 1 in
  x mod 2 = 0
```

Optionally, one more application of IR1 & IR2 could yield:

```
let test x = (x + 1) \mod 2 = 0
```

This would not improve the machine code that we get in the end, though.

Equationa

Inlining

Call-patte specializa tion

Deforestati
A direct
approach
Shortcut
deforestation

Call-pattern

Case of known constructor

IR3 is the simplification rule that actually saves one step of computation. It is applicable when a function value is eliminated, that is, called. What if a value of an algebraic data type is eliminated?

Equationa reasoning

Inlining

Call-patte specialization

Deforestati
A direct
approach
Shortcut
deforestation
Stream fusio

Case of known constructor

IR3 is the simplification rule that actually saves one step of computation.

It is applicable when a function value is eliminated, that is, called.

What if a value of an algebraic data type is eliminated?

A new rule is needed:

Case of known constructor: (IR4) case inj_i v of $x_1.t_1 \parallel x_2.t_2 \longrightarrow let x_i = v$ in t_i

Example

Suppose Booleans are user-defined:

```
type bool = False | True
```

Now, consider this tiny example:

```
let not x = match x with False -> True | True -> False
let test x = not (not x)
```

Equationa

Inlining

Call-patte specializa tion

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

```
let not x = match x with False -> True | True -> False
let test x = not (not x)
```

Inlining (IR1, applied twice) and dead code elimination (IR2) yield:

```
let test x =
  (fun x -> match x with False -> True | True -> False)
        ((fun x -> match x with False -> True | True -> False) x)
```

Binding (IR3) and renaming (SR1) yield:

```
let test x =
  (fun x -> match x with False -> True | True -> False)
    (match x with False -> True | True -> False)
```

Inlining

```
Example, continued
```

```
let test x =
  (fun x -> match x with False -> True | True -> False)
    (match x with False -> True | True -> False)
```

Binding (IR3) yields:

```
let test x =
  let x = match x with False -> True | True -> False in
 match x with False -> True | True -> False
```

Example, continued

```
let test x =
  let x = match x with False -> True | True -> False in
  match x with False -> True | True -> False
```

Now, what? The rule β_v is not applicable here.

Equationa

Inlining

call-patter specializa

A direct approach Shortcut deforestation Stream fusion

```
let test x =
  let x = match x with False -> True | True -> False in
  match x with False -> True | True -> False
```

Now, what? The rule β_v is not applicable here.

Under call-by-need, this let construct can be reduced:

```
let test x =
  match
    match x with False -> True | True -> False
  with
    False -> True | True -> False
```

We then seem to need a "case-of-case" simplification rule.

What happens under call-by-value, though?

Equationa

Inlining

Call-patte specializa ion

Deforestation

A direct
approach
Shortcut
deforestation
Stream fusio

Under call-by-value, one could argue that the right-hand side is pure and apply full β .

One can do better and directly apply a new rule:

E of case: (SR3)

$$E[\text{case } t \text{ of } x_1.t_1 \parallel x_2.t_2] \longrightarrow \text{case } t \text{ of } x_1.E[t_1] \parallel x_2.E[t_2]$$

This rule is valid under every strategy. I think.

It is known as a commuting conversion.

Case-of-case is a special case of it!

Exercise (recommended): Write the rule "case-of-case".

```
Example, continued
```

```
let test x =
  let x = match x with False -> True | True -> False in
  match x with False -> True | True -> False
```

By E-of-case (SR3), we obtain:

```
let test x =
  match x with
  | False -> (
      let x = True in
      match x with False -> True | True -> False
  | True -> (
      let x = False in
      match x with False -> True | True -> False
```

Equationa reasoning

Inlining

Call-patter specialization

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

```
let test x =
  match x with
  | False -> (
    let x = True in
    match x with False -> True | True -> False
  )
  | True -> (
    let x = False in
    match x with False -> True | True -> False
  )
```

Inlining (IR1, IR2) and case-of-known-constructor (IR4) yield:

```
let test x =
  match x with
  | False -> False
  | True -> True
```

Example, continued

```
let test x =
 match x with
   False -> False
  | True -> True
```

Yet another simplification rule, η -reduction for sums, yields:

```
let test x = x
```


Case of case, improved

This rule duplicates the evaluation context:

This is potentially devastating!

E.g., suppose E is "case [] of $y_1.u_1 \parallel y_2.u_2$ ":

Case of case: (SR3c)

case (case
$$t$$
 of $x_1.t_1 \parallel x_2.t_2$) of $y_1.u_1 \parallel y_2.u_2$ \longrightarrow

case t of $x_1.$ (case t_1 of $y_1.u_1 \parallel y_2.u_2$)

 $\parallel x_2.$ (case t_2 of $y_1.u_1 \parallel y_2.u_2$)

The branches u_1 and u_2 are duplicated! What to do?

Case of case, improved

A solution is to introduce join points to limit duplication.

Case of case, with join points: (SR3cj) case (case
$$t$$
 of $x_1.t_1 \parallel x_2.t_2$) of $y_1.u_1 \parallel y_2.u_2$ \longrightarrow let $k_1 = \lambda y_1.u_1$ and $k_2 = \lambda y_2.u_2$ in case t of $x_1.$ (case t_1 of $y_1.k_1$ $y_1 \parallel y_2.k_2$ y_2) $\parallel x_2.$ (case t_2 of $y_1.k_1$ $y_1 \parallel y_2.k_2$ y_2)

The names k_1 and k_2 can be thought of as labels to which one jumps.

We have intentionally allowed the outer case to be duplicated. The two copies scrutinize t_1 and t_2 , so further simplifications should be possible. Equationa reasoning

Inlining
Call-patte

specialization

A direct approach Shortcut deforestation Stream fusion

Inlining yields:

match bor b1 b2 with
| False -> <foo>
| True -> <bar>

```
match
  match b1 with False -> b2 | True -> True
with
  | False -> <foo>
  | True -> <bar>
```

Suppose the function bor implements Boolean disjunction. Consider this:

Inlining

Example, continued

```
match
 match b1 with False -> b2 | True -> True
with
 False -> <foo>
 True -> <bar>
```

Applying rule SR3cj yields:

```
let foo () = <foo>
and bar () = <bar> in
match b1 with
 False -> (match b2 with False -> foo() | True -> bar())
                                            True -> bar())
      -> (match True with False -> foo() |
 True
```

Equationa reasoning

Inlining

Call-patter specialization

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

```
let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> (match True with False -> foo() | True -> bar())
```

By case-of-known-constructor (IR4), we obtain:

```
let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> bar()
```

Equationa

Inlining
Call-patte

specialization

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

```
let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> bar()
```

Because there is only one jump to foo, it can be inlined:

```
let bar () = <bar> in
match b1 with
| False -> (match b2 with False -> <foo> | True -> bar())
| True -> bar()
```


Equationa reasoning

Inlining

Deforestati
A direct
approach
Shortcut

Example, continued

bar is a "join point", a local function that is meant to represent a code label. It is always called via a tail call.

The idea is, it should not require a closure allocation.

```
let bar () = <bar> in
match b1 with
| False -> (match b2 with False -> <foo> | True -> bar())
| True -> bar()
```

It must not be naïvely inlined: that would cause duplication again!

During further transformations, one should ensure that it remains a "join point" and is not inadvertently turned into a full-fledged first-class function.

Maurer, Ariola, Downen, Peyton Jones, Compiling without continuations, 2017.

Equationa

Inlining

Call-patte specializa

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Conclusio

Redundant case elimination

Can we optimize this code?

The rules shown so far can simplify this only if there is a binding of the form let xs = <value> higher up. This is case-of-known-constructor.

Equationa reasoning

Inlining

Call-patte specializa tion

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Conclusio

Redundant case elimination

Can we optimize this code?

The rules shown so far can simplify this only if there is a binding of the form $let xs = \langle value \rangle$ higher up. This is case-of-known-constructor.

We could insert let xs = y :: ys at line 4, but that would be potentially pessimizing.

Better keep track of which equations are known at each program point, and improve case-of-known-constructor to exploit these equations.

See Peyton Jones and Marlow, §6.3.

Equationa

Inlining

Call-patte specialization

Deforestati
A direct
approach
Shortcut
deforestation
Stream fusio

Conclusion

Inlining recursive functions

The rule IR1, as stated, does not allow inlining a function into itself. This could be relaxed.

Inlining a recursive function into itself amounts to loop unrolling.

Inlining a recursive function at its call site amounts to loop peeling.

Summary

An old idea. Particularly important in very high-level languages.

It eliminates the function call overheard, and enables other optimizations.

The danger of inlining is an increase in code size and potential non-termination at compile time. This must be controlled via heuristics or via user annotations (partial evaluation; staging).

Aggressive inliners can be guided by program analyses.

Peyton Jones, Santos, A transformation-based optimiser for Haskell, 1997.

Peyton Jones, Marlow, Secrets of the Glasgow Haskell Compiler inliner, 2002. Jagannathan and Wright, Flow-directed inlining, 1996.

MPRI 2.4 Optimization

François Pottier

Equationa

Inlinin

Call-pattern specialization

Deforestation

A direct
approach
Shortcut
deforestation
Stream fusion

1) Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

6 Conclusion

Equationa reasoning

Inlinin

Call-pattern specializa-

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Conclusio

Example

Here is a reasonably elegant way of obtaining the last element of a list:

Unfortunately, it is inefficient...

Call-pattern specialization

Example

Here is a reasonably elegant way of obtaining the last element of a list:

```
let rec last xs =
  match xs with
              [] -> assert false
             [x] -> x
    :: x :: xs -> last (x :: xs)
```

Unfortunately, it is inefficient...

- The cell x1 :: xs is re-allocated; CSE can recognize and avoid this.
- Two list cells are inspected to find that the third branch must be taken.

Every cell is tested twice! We forget information through the recursive call.

How would you remedy this (by hand)?

Equationa reasoning

Inlinin

Call-pattern specialization

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Example, hand-optimized

By hand, one might write this optimized code:

last_cons is a loop with two registers x and xs.

Keeping track of x does the trick. Each list cell is examined once.

Equationa

Inlinin

Call-pattern specializa-

A direct approach Shortcut deforestatio

Conclusio

Call-pattern specialization

Could a compiler do this automatically?

Inlining last into itself would amount to loop unrolling (i.e., doing two iterations at a time) but would not eliminate the problem entirely.

The problem lies in the call last (x :: xs), where information is lost.

We must specialize last for this call pattern.

Equationa

Inlining

Call-pattern specialization

Deforestation

A direct
approach
Shortcut
deforestation
Stream fusion

The first step is to create a specialized function, last_cons.

The equation last $(x :: xs) = last_cons x xs holds (obviously).$

We record (remember) this equation for later use.

Equationa reasoning

Call-na

Call-pattern specialization

A direct approach Shortcut deforestation Stream fusion The second step is to inline last into last_cons.

Equationa reasoning

Inlinin

Call-pattern specialization

Deforestation
A direct approach
Shortcut deforestation
Stream fusion

By inlining xs and exploiting case-of-known-constructor, we get:

What should be the last step?

Equationa reasoning

Call-pattern specialization

A direct approach Shortcut deforestation Stream fusion

Example, optimized

The last step is to replace last (x :: xs) with last_cons x xs.

There are two occurrences, one of which lies within last_cons itself:

This exploits an equation that was recorded earlier.

We get the code that we would have written, with one iteration unrolled.

The correctness of exploiting an equation within itself is nonobvious.

Recall this situation:

The equation last $(x :: xs) = last_{cons} x xs holds (obviously).$

There are two places where it can be used right now... What if we did so?

We get a non-terminating version of the loop:

This "obviously correct" transformation is actually incorrect.

We have in fact rolled the loop so it jumps to itself after 0 iterations!

Exploiting x = v within itself leads to x = x, which is nonsensical.

Equationa

Inlinin

Call-pattern specializa-

A direct approach Shortcut deforestation Stream fusio

Conclusion

Summary

Call-pattern specialization is also known as constructor specialization.

It is simple, but runs a risk of generating uninteresting specializations and a risk of nontermination at compile-time. Heuristics are needed.

Peyton Jones, Call-pattern specialisation for Haskell programs, 2007.

Equationa

Inlinin

Call-patte specializa tion

> A direct approach Shortcut deforestation Stream fusion

Deforestation A direct approach

4 Deforestation

A direct approach

3 Call-pattern specialization

Shortcut deforestation

Stream fusion

6 Conclusion

Deforestation

Programs expressed in a high-level style often build intermediate data structures (lists, trees, ...) which are immediately used and discarded.

They typically allow communication between a producer and a consumer.

Deforestation (Wadler, 1990) aims to get rid of them.

A direct approach

- 3 Call-pattern specialization
- 4 Deforestation
 - A direct approach

A direct approach

Example

The composition of filter and map allocates an intermediate list.

As a direct attempt at deforestation, let us try and optimize it.

```
let bar p f xs =
  List.filter p (List.map f xs)
```

Let us specialize for the call pattern List.filter p (List.map f xs)... I am using an expression as a call pattern – this goes beyond GHC.

Equationa reasoning

Call-patte

Deforestatio

A direct approach Shortcut deforestation Stream fusion After creating a specialized copy and inlining List.filter and List.map into it, we get:

```
let filter_map p f xs =
 match
    match xs with
    | [] -> []
    | x :: xs -> f x :: List.map f xs
  with
  | [] -> []
  | x :: xs ->
      if p x then x :: List.filter p xs
      else List.filter p xs
let bar p f xs =
  filter_map p f xs
```

A direct approach

Performing case-case conversion yields:

```
let filter_map p f xs =
  match xs with
    [] -> []
  | x :: xs ->
      let x :: xs = f x :: List.map f xs in
      if p x then x :: List.filter p xs
      else List.filter p xs
```

Equationa reasoning

Call-patte

A direct approach Shortcut deforestation Deciding that e1 :: e2 is evaluated from left-to-right, we get:

```
let filter_map p f xs =
  match xs with
  | [] -> []
  | x :: xs ->
    let x = f x in
    let xs = List.map f xs in
    if p x then x :: List.filter p xs
    else List.filter p xs
```

Evaluation order is left undecided by OCaml.

```
Example
```

We wisely choose to inline xs, as it is used only once (in each branch):

```
let filter_map p f xs =
  match xs with
| [] -> []
| x :: xs ->
    let x = f x in
    if p x then x :: List.filter p (List.map f xs)
    else List.filter p (List.map f xs)
```

This is full β !

It is valid under call-by-need. (Assuming no side effects but divergence.) It is invalid under call-by-value (with side effects), unless f is pure.

f must not read or write mutable data, and must terminate.

The OCaml compiler won't do this!

We now recognize the call pattern ${\tt List.filter}\ {\tt p}\ ({\tt List.map}\ {\tt f}\ {\tt xs}).$

```
let rec filter_map p f xs =
  match xs with
  | [] -> []
  | x :: xs ->
    let x = f x in
    if p x then x :: filter_map p f xs
    else filter_map p f xs
```

We get the code that an OCaml programmer would write by hand.

No intermediate list! Successful deforestation.

A direct approach

The equation List.filter p (List.map f xs) = filter_map p f xs

- holds under call-by-need;
- holds under call-by-value (with side effects) if f is pure.

Pure languages offer greater potential for aggressive optimization!

Shortcut

deforestation

3 Call-pattern specialization

4 Deforestation

Shortcut deforestation

Shortcut deforestation

Idea 1: focus on lists

Focus on lists, a universal type for exchanging sequences of elements.

Some functions are list producers; some are list consumers.

Some, such as filter and map, are both. (Not a problem.)

Some, such as zip and unzip have two inputs or two outputs.

Composing these functions yields producer-consumer pipelines.

Equation: reasoning

Call-pat

Deforestation
A direct
approach
Shortcut
deforestation

Idea 2: use a custom internal data format

Producers and consumers use lists as an exchange format.

They can work internally using a different data representation.

They are then be wrapped in conversions to and from lists.

When a producer and consumer are composed,

- two conversions, to and from lists, should cancel out,
- so there remains to optimize a composition at the internal data type.

This is an instance of the worker/wrapper transformation.

Gill and Hutton, The worker/wrapper transformation, 2009.

The internal data format should have a nonrecursive type, so that:

- Most producers and consumers are not recursive!
- At least one of the conversions, to and from lists, must be recursive.

Two approaches, based on two internal data formats, have been proposed:

- shortcut deforestation, based on folds;
- stream fusion, based on streams.

Gill, Launchbury, Peyton Jones, A short cut to deforestation, 1993.

Coutts, Leshchinskiy, Stewart, Stream fusion: from lists to streams to nothing at all, 2007.

Shortcut deforestation

The internal data format

In shortcut deforestation, a sequence is internally represented as a fold.

A fold is a function that allows traversing the sequence.

```
type 'a fold =
  { fold: 'b. ('a -> 'b -> 'b) -> 'b -> 'b }
```

It is a producer which pushes elements towards a consumer.

This is the standard Church encoding of lists.

Gill et al.'s paper does not explicitly use the above polymorphic type. I follow them.

Equationa reasoning

Inlining

Call-patte specializa tion

A direct approach Shortcut deforestation

Stream fusion

Conclusio

Converting a list to a fold

This is OCaml's List.fold_right, with the last two parameters swapped:

If xs is a list then fun c n \rightarrow foldr c n xs is the corresponding fold.

We could define:

```
let import (xs : 'a list) : 'a fold =
  { fold = fun c n -> foldr c n xs }
```


Shortcut deforestation

```
Converting a fold to a list
```

To convert a fold to a list, we apply it to "cons" and "nil":

```
let build g =
  g (fun x xs -> x :: xs) []
```

We could define:

```
let export ({ fold } : 'a fold) : 'a list =
  build fold
```

Isomorphism

The idea is that we have an isomorphism between lists and (certain well-behaved) folds.

The following law holds:

export (import xs) is observationally equivalent to xs.

The reverse law holds if f is pure and terminating:

• import (export f) is equivalent to f.

Naturally, the law that's needed when composing two components is...

Inlini

Call-patte specialization

A direct approach Shortcut deforestation Stream fusion

Isomorphism

The idea is that we have an isomorphism between lists and (certain well-behaved) folds.

The following law holds:

• export (import xs) is observationally equivalent to xs.

The reverse law holds if f is pure and terminating:

• import (export f) is equivalent to f.

Naturally, the law that's needed when composing two components is...

...the second one.

Let's just pretend that it holds unconditionally.

Challenge: formalize build/foldr in Coq and establish the isomorphism.

Shortcut deforestation

foldr c n (build g) = g c n

In Gill et al.'s paper, the second law is known as "the foldr/build rule":

Equation: reasoning

Call-patte

A direct approach Shortcut deforestation

0.....

An example consumer-and-producer

In the list library, map is written as follows:

```
let map f xs =
  build (fun c n ->
    foldr (fun x xs -> c (f x) xs) n xs
)
```

The list xs is imported using foldr, yielding a fold.

A new fold is then constructed on top of it.

This new fold is converted back to a list using build.

A direct approach Shortcut deforestation

An example consumer-and-producer

Similarly, filter is written as follows:

```
let filter p xs =
  build (fun c n ->
    foldr (fun x xs -> if p x then c x xs else xs) n xs
```


approach Shortcut

deforestation

Back to (filter; map)

What happens when we compose filter and map?

```
let bar p f xs =
  filter p (map f xs)
```

Inlining filter and map yields:

We recognize foldr _ _ (build _).

Exploiting the equation foldr c n (build g) = g c n yields:

```
let bar p f xs =
  build (fun c n ->
    let c x xs = if p x then c x xs else xs in
    foldr (fun x xs -> c (f x) xs) n xs
```

This is where we save an intermediate list.

Inlining c yields:

```
let bar p f xs =
build (fun c n ->
  foldr (fun x xs ->
    let x = f x in
    if p x then c x xs else xs
  ) n xs
)
```

This is where filter and map come into contact and combine.

We are essentially finished, but can work a little more.

Inlining build yields:

```
let bar p f xs =
  foldr (fun x xs ->
    let x = f x in
    if p x then x :: xs else xs
  ) [] xs
```

Call-pattern specialization for foldr yields:

```
let rec filter_map p f xs =
  match xs with
  | [] -> []
  | x :: xs ->
     let xs = filter_map p f xs in
     let x = f x in
     if p x then x :: xs else xs

let bar p f xs =
  filter_map p f xs
```

Assuming the language is pure, or assuming p and f are pure, we can inline xs...

Inlinin

Call-patte specializa tion

A direct approach Shortcut deforestation Stream fusion

```
Back to (filter; map)
```

Inlining xs yields:

```
let rec filter_map p f xs =
  match xs with
  | [] -> []
  | x :: xs ->
    let x = f x in
    if p x then x :: filter_map p f xs
    else filter_map p f xs
```

We again get the code that an OCaml programmer would write by hand.

Equationa

Inlinir

Call-patte specializa tion

A direct approach Shortcut

Stream fusion

- 1 Equational reasoning
- 2 Inlining and simplification
- 3 Call-pattern specialization
- 4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

6 Conclusion

Equationa reasoning

Call-patte

Deforestatio
A direct
approach
Shortcut
deforestation
Stream fusion

The internal data format

In stream fusion, a sequence is internally represented as a stream.

A stream is a function that allows querying the sequence.

```
type 'a stream =
  | S:
      (* If you have a pair of a producer function... *)
      ('s -> ('a, 's) step)
      (* ... and an initial state, *)
      * 's ->
      (* then you have a stream. *)
      'a stream
```

It is a producer from which a consumer can pull elements.

A typical object-oriented idiom, analogous to Java iterators, but not inherently mutable.

This is an existential type, very much like the type of closures in week 3.

Equationa reasoning

Inlinin

Call-patte specialization

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Conclusion

```
The internal data format
```

Querying a stream produces a result of the following form:

The types stream and step are nonrecursive.

This, and the existence of Skip, allows most stream producers to be nonrecursive functions.

A consumer must ask, ask, ask until a non-Skip result is produced.

Equationa

Inlinin

Call-patte specializa tion

A direct approach Shortcut deforestation Stream fusion Converting a list to a stream

This conversion function is nonrecursive:

Exercise: Here, what is the type 's of states?

Equationa

Inlinin

Call-patte specializa tion

Deforestation A direct approach

Stream fusion

. . .

The local function next is in fact closed, so one can also write:

Converting a list to a stream

Equationa

O-III

tion

A direct approach Shortcut deforestation

Stream fusion

Converting a stream to a list

This is a recursive consumer function:

Equation

Call-patte

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

There is an isomorphism between lists and (certain) streams.

The following law holds:

• unstream (stream xs) is observationally equivalent to xs.

The reverse law holds if str is pure and terminating:

• stream (unstream str) is equivalent to str.

Again, we need the second law, known as "stream/unstream".

Let's pretend that it holds unconditionally.

Equationa reasoning

Inlining

Call-patte specializa tion

Deforestatio

A direct approach Shortcut

Stream fusion

Stream rusi

Examples of stream producers

How would you implement a singleton stream?

Equationa reasoning

Call-patte

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

How would you implement a singleton stream?

```
let return (x : 'a) : 'a stream =
  let next s =
    if s then Yield (x, false) else Done
  in
  S (next, true)
```

Examples of stream producers

The type of s is bool: either we have already yielded an element, or we have not.

Each stream producer freely chooses its type of internal states.

Exercise: Write interval of type int -> int -> int stream.

Exercise: Write append of type 'a stream -> 'a stream -> 'a stream.

Equationa

Inlining

Call-patte specializa

Deforestatio
A direct
approach
Shortcut
deforestation
Stream fusion

An example consumer-and-producer

Here is map on streams, known as S.map in the following:

Again, not a recursive function!

Equationa

Inlinin

Call-patte specializa

A direct approach Shortcut deforestation Stream fusion

0----

An example consumer-and-producer

Composing with conversions to and from streams yields map on lists:

```
let map (f : 'a -> 'b) (xs : 'a list) : 'b list =
  unstream (S.map f (stream xs))
```


Equationa

Inlinin

Call-patte specializa

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

An example consumer-and-producer

Here is filter on streams, known as S.filter in the following:

Again, not a recursive function!

Stream fusion

An example consumer-and-producer

Composing with conversions to and from streams yields filter on lists:

```
let filter (p : 'a -> bool) (xs : 'a list) : 'a list =
  unstream (S.filter p (stream xs))
```


Equationa reasoning

Inlining

Call-patter specialization

A direct approach Shortcut deforestation Stream fusion

Conclusion

Back to (filter; map)

What happens when we compose filter and map?

```
let bar p f xs =
 L.filter p (L.map f xs)
let bar p f xs =
  let next s =
    match s with
          [] -> Done
    | x :: s ->
        let y = f x in if p y then Yield (y, s) else Skip s
  in
  let rec unfold s =
    match next s with
    | Done -> []
    | Yield (x, s) \rightarrow x :: unfold s
     Skip s -> unfold s
  in
  unfold xs
let bar p f xs =
  let rec unfold s =
    match
      match s with
            [] -> Done
```


Equationa

Inlinin

Call-patte specializa tion

Deforestation

A direct approach Shortcut deforestation

Stream fusion

Conclusion

Back to (filter; map)

Inline filter and map:

```
let bar p f xs =
  unstream (S.filter p (stream (
    unstream (S.map f (stream xs))
)))
```


Equationa

Inlinin

Call-patte specializa tion

A direct approach Shortcut deforestation Stream fusion

Conclusio

```
Back to (filter; map)
```

Use the stream/unstream rule:

```
let bar p f xs =
  unstream (S.filter p (S.map f (stream xs)))
```

S.filter and S.map come in contact.

Let's inline the hell out of this code!

approach

Stream fusion

Back to (filter; map)

Inline stream:

```
let bar p f xs =
  unstream (S.filter p (S.map f (S (stream_next, xs))))
```

Call patt

specializa tion

A direct approach Shortcut deforestation

Stream fusion

Back to (filter; map)

Inline S.map:

Call-patte specializa

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Back to (filter; map)

Inline stream_next:

Equationa

Inlining

call-patte specialization

A direct approach Shortcut deforestation

Stream fusion

Back to (filter; map)

Perform case-of-case conversion, followed with case-of-constructor:

```
let bar p f xs =
  let next s =
    match s with
    | [] -> Done
    | x :: s -> Yield (f x, s)
  in
  unstream (S.filter p (S (next, xs)))
```

Back to (filter; map)

Inline S.filter:

```
let bar p f xs =
  let next s =
    match s with
      [] -> Done
     x :: s \rightarrow Yield (f x, s)
  in
  let next s =
    match next s with
    Done -> Done
    | Yield (x, s) -> if p x then Yield (x, s) else Skip s
      Skip s
                   -> Skip s
  in
  unstream (S (next, xs))
```

Inlinin

Call-patte specializa

Deforestatio
A direct
approach
Shortcut
deforestation
Stream fusion

Back to (filter; map)

Inline the first next function into the second one:

Inlinin

Call-patte specializa tion

Deforestati

A direct approach Shortcut deforestation

Stream fusion

Back to (filter; map)

Apply case-of-case and case-of-constructor again:

mining

Call-patte specializa tion

Deforestatio

A direct approach Shortcut deforestation

Stream fusion

Conclusion

Back to (filter; map)

Inline unstream:

```
let bar p f xs =
  let next s =
    match s with
          [] -> Done
    | x :: s ->
        let y = f x in if p y then Yield (y, s) else Skip s
  in
  let rec unfold s =
    match next s with
    | Done -> []
    | Yield (x, s) \rightarrow x :: unfold s
      Skip s -> unfold s
  in
  unfold xs
```

Back to (filter; map)

Inline next into unstream:

```
let bar p f xs =
  let rec unfold s =
    match
      match s with
            [] -> Done
      | x :: s ->
          let y = f x in if p y then Yield (y, s) else Skip s
    with
    Done
                  -> []
    | Yield (x, s) \rightarrow x :: unfold s
      Skip s -> unfold s
  in
  unfold xs
```


Equationa reasoning

Call-patte

Deforestatio
A direct
approach

A direct approach Shortcut deforestation Stream fusion

```
Back to (filter; map)
```

Apply case-of-case again, then a couple rules, then case-of-constructor:

Exercise: Clarify which rewriting rules are used here.

Equationa

Call-natte

specializa tion

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

Back to (filter; map)

(Optional.) Hoist unfold out. (This is λ -lifting.)

We get the code that an OCaml programmer would write by hand.

No intermediate data structure! Successful deforestation again.

Equationa

Inlinir

Call-patte specializa

A direct approach Shortcut deforestation Stream fusion

Stream fu

What's the point?

Why is stream fusion preferable to shortcut deforestation?

Shortcut deforestation cannot express foldl in a nice way.

Exercise: Implement fold1 on streams, then on lists.

Exercise: Find out how fold1 (+) 0 (append xs ys) is optimized. You should reach a sequence of two loops – no memory allocation.

Equation

Inlini

Call-patte specializa

Deforestation
A direct
approach
Shortcut
deforestation
Stream fusion

The way of the future?

Do not let the compiler's heuristics decide which reductions and simplifications should take place at compile time.

Instead, give explicit staging annotations to distinguish pipeline-construction-time computation and pipeline-runtime computation!

Relying on a general-purpose compiler for library optimization is slippery. [...] A compiler offers no guarantee that optimization will be successfully applied. [...] An innocuous change to a program [can] make it much slower.

Kiselyov, Biboudis, Palladinos, Smaragdakis, Stream fusion, to completeness, 2017.

Equationa

Inlinin

Call-patte specializa tion

A direct approach Shortcut deforestation

Conclusion

Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

Equationa

Inlinir

Call-patte specializa

Deforestation

A direct
approach
Shortcut
deforestation
Stream fusio

Conclusion

Program derivation

Equational reasoning can be used not just by compilers, but also by programmers, by hand.

Starting from a simple, inefficient program, derive efficient code via a series of rewriting steps.

See my blog post on a derivation of Knuth-Morris-Pratt.

Supercompilation can do this, too!

Secher and Sørensen, On Perfect Supercompilation, 1999.

Equationa

Inlinin

Call-patte specialization

Deforestati
A direct
approach
Shortcut
deforestation
Stream fusio

Conclusion

A few things to remember

- Equational reasoning can be a powerful means of transforming or deriving programs.
- λ -calculus-based (intermediate) languages allow expressing a wide range of program transformations and optimizations.
- Side effects (non-termination, mutable state...) complicate matters.