
MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

1/113

Deriving, transforming, optimizing programs

MPRI 2.4

François Pottier

2017

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

2/113

Let us be dreamers

An old dream:

• write high-level, abstract, modular code;
• let the compiler produce low-level, efficient code.

“Zero-cost abstraction”. (A C++/Rust slogan.)

(Pure) functional prog. languages should lend themselves well to this idea.

• No mutable state. Aliasing not a danger.
Syntactically obvious where each variable receives its value.

• Equational reasoning.
Programs denote values. Replace equals with equals.

• Simple, rich language.
Many transformations easily expressed as rewriting rules.

Perhaps not quite true (do need side effects in some form), but let’s see.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

3/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

4/113

Equational reasoning

If two terms t1 and t2 are observationally equivalent,

and if we have reason to believe that t2 is more efficient than t1,

• or that this rewriting step will enable further optimizations,

then we can optimize a program by replacing t1 with t2.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

5/113

Equality

In a a pure & total language, such as Coq, a term is equal to its value.

Two terms that have the same value are equal.

Equal terms are interchangeable – Leibniz’s Principle.

Life in an ideal (mathematical) world. See DemoEqReasoning.

https://gitlab.inria.fr/fpottier/mpri-2.4-public/tree/master/coq/DemoEqReasoning.v

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

6/113

Observational equivalence

Fix some notion of “success”, e.g. t succeeds iff t computes 42.

• Note that this notion depends on the evaluation strategy.

With respect to this notion of success, or “observation”,

t1 and t2 are observationally equivalent (t1 ' t2) iff,

for every (well-typed) context C,

C[t1] succeeds if and only if C[t2] succeeds.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

7/113

When is a rewriting step valid?

Is full β a valid law?
(λx .t2) t1 ' t2[t1/x]

In a pure & total language, such as Coq, yes. Part of definitional equality.

Under call-by-name, even in the presence of non-termination, yes.

Under call-by-value, in the presence of non-termination or other side
effects, no.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

7/113

When is a rewriting step valid?

Is full β a valid law?
(λx .t2) t1 ' t2[t1/x]

In a pure & total language, such as Coq, yes. Part of definitional equality.

Under call-by-name, even in the presence of non-termination, yes.

Under call-by-value, in the presence of non-termination or other side
effects, no.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

8/113

full β is invalid under call-by-value

Repeat after me:

full β is invalid under call-by-value

full β is invalid under call-by-value

full β is invalid under call-by-value

After 20+ years, I keep making this mistake from time to time!

(λx .t2) t1 cannot be “simplified” to t2[t1/x]

let x = t1 in t2 cannot be “simplified” to t2[t1/x]

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

9/113

What about call-by-value? βv

Under call-by-value, in the presence of side effects, full β is invalid.

One must restrict it to the case where t1 is pure.

(λx .t2) t1 −→ t2[t1/x] provided t1 is pure

Roughly, a closed term t is pure if there exists a value v such that t
reduces to v, independently of the store.

Whether a non-closed term t is closed depends on purity hypotheses
about its free variables. E.g., is “f x” pure? Yes, IF f has no side effects.

As a simple special case, one can use βv , which is valid:

(λx .t2) v1 −→ t2[v1/x]

This follows from the theory of parallel reduction.
See LambdaCalculusStandardization/pcbv_adequacy.

https://gitlab.inria.fr/fpottier/mpri-2.4-public/tree/master/coq/LambdaCalculusStandardization.v

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

10/113

When is a rewriting step profitable?

When it is valid, is full β a profitable optimization?

(λx .t2) t1 −→ t2[t1/x]

Under call-by-name, it is safe for time and space,
but can increase code size.

Under call-by-need, if x has multiple occurrences in t2, or if x occurs under
a λ within t2, then the right-hand side risks repeating the computation of t1,
wasting time and space. This danger exists even if t1 is a value!

In short, this optimization step seems profitable when x is used “at most
once” in t2, for a suitable definition of this notion.

Turner, Wadler, Mossin, Once upon a type, 1995.

Peyton Jones, Santos, A transformation-based optimiser for Haskell, 1997.

https://doi.org/10.1145/224164.224168
https://www.microsoft.com/en-us/research/wp-content/uploads/1998/09/comp-by-trans-scp.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

10/113

When is a rewriting step profitable?

When it is valid, is full β a profitable optimization?

(λx .t2) t1 −→ t2[t1/x]

Under call-by-name, it is safe for time and space,
but can increase code size.

Under call-by-need, if x has multiple occurrences in t2, or if x occurs under
a λ within t2, then the right-hand side risks repeating the computation of t1,
wasting time and space. This danger exists even if t1 is a value!

In short, this optimization step seems profitable when x is used “at most
once” in t2, for a suitable definition of this notion.

Turner, Wadler, Mossin, Once upon a type, 1995.

Peyton Jones, Santos, A transformation-based optimiser for Haskell, 1997.

https://doi.org/10.1145/224164.224168
https://www.microsoft.com/en-us/research/wp-content/uploads/1998/09/comp-by-trans-scp.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

11/113

Summary so far

A proposed rewriting rule t1 −→ t2 is valid if t1 ' t2 holds.

• This is influenced by the evaluation strategy, the presence or absence
of side effects, and type hypotheses.

A proposed rewriting rule t1 −→ t2 may or may not be profitable.

• This is influenced by many factors, including further optimizations and
transformations.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

12/113

let-reduction

So far, I have discussed full β versus βv .

If the language has a primitive construct,
then an analogous discussion applies to “full let” versus letv .

let x = t1 in t2 −→ t2[t1/x]
let x = v1 in t2 −→ t2[v1/x]

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

13/113

η-reduction and η-expansion

Is this optimization valid?

λx .t x ' t provided x < fv(t)

In a pure & total language, such as Coq, yes. Part of definitional equality.

Under call-by-name, in the presence of non-termination, I think it is...

Under call-by-value, in the presence of side effects, it definitely isn’t.

When it is valid, is it profitable? Possibly. E.g., after a naïve CPS
transformation, η-reduction turns λx .k x into k , which amounts to tail call
optimization.

Yet η-reduction can be costly and η-expansion can be profitable. Tricky!

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

14/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

15/113

What is inlining?

Inlining is the action of replacing a call to a known function with the
suitably instantiated body of this function.

So, is inlining just another name for βv?

(λx .t2) v1 −→ t2[v1/x]

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

16/113

What is inlining?

No. Inlining can be more accurately described by several rewriting rules:

Looking up a definition: (IR1)
let x = v in C[x] −→ let x = v in C[v] if x < bv(C)

Eliminating dead code: (IR2)
let x = v in t −→ t if x < fv(t)

Binding formals to actuals: (IR3)
(λx .t2) t1 −→ let x = t1 in t2

These rules are valid under every strategy and in the face of side effects.

Rule IR1 works for every value v, not just λ-abstractions.

Rules IR1 and IR2 work for “let rec”, too!

Rule IR1 duplicates v and can cause non-termination at compile-time (!)
or an explosion in code size.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

17/113

Simplification rules

A few additional simplification rules are useful:

Eliminating an alias: (SR1)
let y = x in t −→ t [x/y]

Hoisting a binding: (SR2)
E[let x = t1 in t2] −→ let x = t1 in E[t2]

These rules are valid under every strategy and in the face of side effects.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

18/113

Example

Consider this tiny example:

let succ x = x + 1
let even x = x mod 2 = 0
let test x = even (succ x)

This could be call-by-value (OCaml) or call-by-need (Haskell).

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

19/113

Example, continued

let succ x = x + 1
let even x = x mod 2 = 0
let test x = even (succ x)

Inlining succ and even (IR1, applied twice) yields:

let succ x = x + 1
let even x = x mod 2 = 0
let test x = (fun x -> x mod 2 = 0) ((fun x -> x + 1) x)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

20/113

Example, continued

let succ x = x + 1
let even x = x mod 2 = 0
let test x = (fun x -> x mod 2 = 0) ((fun x -> x + 1) x)

Eliminating dead code (IR2, applied twice) yields:

let test x = (fun x -> x mod 2 = 0) ((fun x -> x + 1) x)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

21/113

Example, continued

let test x = (fun x -> x mod 2 = 0) ((fun x -> x + 1) x)

Binding (IR3) yields:

let test x = (fun x -> x mod 2 = 0) (let x = x in x + 1)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

22/113

Example, continued

let test x = (fun x -> x mod 2 = 0) (let x = x in x + 1)

Renaming (SR1) yields:

let test x =
(fun x -> x mod 2 = 0) (x + 1)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

23/113

Example, continued

let test x =
(fun x -> x mod 2 = 0) (x + 1)

Binding (IR3) yields:

let test x =
let x = x + 1 in
x mod 2 = 0

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

24/113

Example, continued

let test x =
let x = x + 1 in
x mod 2 = 0

Optionally, one more application of IR1 & IR2 could yield:

let test x =
(x + 1) mod 2 = 0

This would not improve the machine code that we get in the end, though.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

25/113

Case of known constructor

IR3 is the simplification rule that actually saves one step of computation.

It is applicable when a function value is eliminated, that is, called.

What if a value of an algebraic data type is eliminated?

A new rule is needed:

Case of known constructor: (IR4)
case inji v of x1.t1 || x2.t2 −→ let xi = v in ti

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

25/113

Case of known constructor

IR3 is the simplification rule that actually saves one step of computation.

It is applicable when a function value is eliminated, that is, called.

What if a value of an algebraic data type is eliminated?

A new rule is needed:

Case of known constructor: (IR4)
case inji v of x1.t1 || x2.t2 −→ let xi = v in ti

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

26/113

Example

Suppose Booleans are user-defined:

type bool = False | True

Now, consider this tiny example:

let not x = match x with False -> True | True -> False
let test x = not (not x)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

27/113

Example, continued

let not x = match x with False -> True | True -> False
let test x = not (not x)

Inlining (IR1, applied twice) and dead code elimination (IR2) yield:

let test x =
(fun x -> match x with False -> True | True -> False)

((fun x -> match x with False -> True | True -> False) x)

Binding (IR3) and renaming (SR1) yield:

let test x =
(fun x -> match x with False -> True | True -> False)

(match x with False -> True | True -> False)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

28/113

Example, continued

let test x =
(fun x -> match x with False -> True | True -> False)

(match x with False -> True | True -> False)

Binding (IR3) yields:

let test x =
let x = match x with False -> True | True -> False in
match x with False -> True | True -> False

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

29/113

Example, continued

let test x =
let x = match x with False -> True | True -> False in
match x with False -> True | True -> False

Now, what? The rule βv is not applicable here.

Under call-by-need, this let construct can be reduced:

let test x =
match

match x with False -> True | True -> False
with

False -> True | True -> False

We then seem to need a “case-of-case” simplification rule.

What happens under call-by-value, though?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

29/113

Example, continued

let test x =
let x = match x with False -> True | True -> False in
match x with False -> True | True -> False

Now, what? The rule βv is not applicable here.

Under call-by-need, this let construct can be reduced:

let test x =
match

match x with False -> True | True -> False
with

False -> True | True -> False

We then seem to need a “case-of-case” simplification rule.

What happens under call-by-value, though?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

30/113

E of case

Under call-by-value, one could argue that the right-hand side is pure
and apply full β.

One can do better and directly apply a new rule:

E of case: (SR3)
E[case t of x1.t1 || x2.t2] −→ case t of x1.E[t1] || x2.E[t2]

This rule is valid under every strategy. I think.

It is known as a commuting conversion.

Case-of-case is a special case of it!

Exercise (recommended): Write the rule “case-of-case”.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

31/113

Example, continued

let test x =
let x = match x with False -> True | True -> False in
match x with False -> True | True -> False

By E-of-case (SR3), we obtain:

let test x =
match x with
| False -> (

let x = True in
match x with False -> True | True -> False

)
| True -> (

let x = False in
match x with False -> True | True -> False

)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

32/113

Example, continued

let test x =
match x with
| False -> (

let x = True in
match x with False -> True | True -> False

)
| True -> (

let x = False in
match x with False -> True | True -> False

)

Inlining (IR1, IR2) and case-of-known-constructor (IR4) yield:

let test x =
match x with
| False -> False
| True -> True

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

33/113

Example, continued

let test x =
match x with
| False -> False
| True -> True

Yet another simplification rule, η-reduction for sums, yields:

let test x = x

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

34/113

Case of case, improved

This rule duplicates the evaluation context:

E of case: (SR3)
E[case t of x1.t1 || x2.t2] −→ case t of x1.E[t1] || x2.E[t2]

This is potentially devastating!

E.g., suppose E is “case [] of y1.u1 || y2.u2”:

Case of case: (SR3c)
case (case t of x1.t1 || x2.t2) of y1.u1 || y2.u2 −→

case t of x1.(case t1 of y1.u1 || y2.u2)
|| x2.(case t2 of y1.u1 || y2.u2)

The branches u1 and u2 are duplicated! What to do?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

35/113

Case of case, improved

A solution is to introduce join points to limit duplication.

Case of case, with join points: (SR3cj)
case (case t of x1.t1 || x2.t2) of y1.u1 || y2.u2 −→

let k1 = λy1.u1 and k2 = λy2.u2 in
case t of x1.(case t1 of y1.k1 y1 || y2.k2 y2)

|| x2.(case t2 of y1.k1 y1 || y2.k2 y2)

The names k1 and k2 can be thought of as labels to which one jumps.

We have intentionally allowed the outer case to be duplicated. The two
copies scrutinize t1 and t2, so further simplifications should be possible.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

36/113

Example

Suppose the function bor implements Boolean disjunction. Consider this:

match bor b1 b2 with
| False -> <foo>
| True -> <bar>

Inlining yields:

match
match b1 with False -> b2 | True -> True

with
| False -> <foo>
| True -> <bar>

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

37/113

Example, continued

match
match b1 with False -> b2 | True -> True

with
| False -> <foo>
| True -> <bar>

Applying rule SR3cj yields:

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> (match True with False -> foo() | True -> bar())

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

38/113

Example, continued

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> (match True with False -> foo() | True -> bar())

By case-of-known-constructor (IR4), we obtain:

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> bar()

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

39/113

Example, continued

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> bar()

Because there is only one jump to foo, it can be inlined:

let bar () = <bar> in
match b1 with
| False -> (match b2 with False -> <foo> | True -> bar())
| True -> bar()

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

40/113

Example, continued

bar is a “join point”, a local function that is meant to represent a code label.

It is always called via a tail call.

The idea is, it should not require a closure allocation.

let bar () = <bar> in
match b1 with
| False -> (match b2 with False -> <foo> | True -> bar())
| True -> bar()

It must not be naïvely inlined: that would cause duplication again!

During further transformations, one should ensure that it remains a “join
point” and is not inadvertently turned into a full-fledged first-class function.

Maurer, Ariola, Downen, Peyton Jones,
Compiling without continuations, 2017.

https://www.microsoft.com/en-us/research/publication/compiling-without-continuations/

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

41/113

Redundant case elimination

Can we optimize this code?

match xs with
| [] -> []
| y :: ys ->

match xs with
| [] -> <foo>
| z :: zs -> <bar>

The rules shown so far can simplify this only if there is a binding of the
form let xs = <value> higher up. This is case-of-known-constructor.

We could insert let xs = y :: ys at line 4,
but that would be potentially pessimizing.

Better keep track of which equations are known at each program point,
and improve case-of-known-constructor to exploit these equations.

See Peyton Jones and Marlow, §6.3.

https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

41/113

Redundant case elimination

Can we optimize this code?

match xs with
| [] -> []
| y :: ys ->

match xs with
| [] -> <foo>
| z :: zs -> <bar>

The rules shown so far can simplify this only if there is a binding of the
form let xs = <value> higher up. This is case-of-known-constructor.

We could insert let xs = y :: ys at line 4,
but that would be potentially pessimizing.

Better keep track of which equations are known at each program point,
and improve case-of-known-constructor to exploit these equations.

See Peyton Jones and Marlow, §6.3.

https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

42/113

Inlining recursive functions

The rule IR1, as stated, does not allow inlining a function into itself.
This could be relaxed.

Inlining a recursive function into itself amounts to loop unrolling.

Inlining a recursive function at its call site amounts to loop peeling.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

43/113

Summary

An old idea. Particularly important in very high-level languages.

It eliminates the function call overheard, and enables other optimizations.

The danger of inlining is an increase in code size and potential
non-termination at compile time. This must be controlled
via heuristics or via user annotations (partial evaluation; staging).

Aggressive inliners can be guided by program analyses.

Peyton Jones, Santos,
A transformation-based optimiser for Haskell, 1997.

Peyton Jones, Marlow,
Secrets of the Glasgow Haskell Compiler inliner, 2002.

Jagannathan and Wright, Flow-directed inlining, 1996.

https://www.microsoft.com/en-us/research/wp-content/uploads/1998/09/comp-by-trans-scp.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2002/07/inline.pdf
https://doi.org/10.1145/249069.231417

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

44/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

45/113

Example

Here is a reasonably elegant way of obtaining the last element of a list:

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

Unfortunately, it is inefficient...

• The cell x1 :: xs is re-allocated; CSE can recognize and avoid this.
• Two list cells are inspected to find that the third branch must be taken.

Every cell is tested twice! We forget information through the recursive call.

How would you remedy this (by hand)?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

45/113

Example

Here is a reasonably elegant way of obtaining the last element of a list:

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

Unfortunately, it is inefficient...

• The cell x1 :: xs is re-allocated; CSE can recognize and avoid this.
• Two list cells are inspected to find that the third branch must be taken.

Every cell is tested twice! We forget information through the recursive call.

How would you remedy this (by hand)?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

46/113

Example, hand-optimized

By hand, one might write this optimized code:

let rec last xs =
match xs with
| [] -> assert false
| x :: xs -> last_cons x xs

and last_cons x xs =
match xs with
| [] -> x
| x :: xs -> last_cons x xs

last_cons is a loop with two registers x and xs.

Keeping track of x does the trick. Each list cell is examined once.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

47/113

Call-pattern specialization

Could a compiler do this automatically?

Inlining last into itself would amount to loop unrolling (i.e., doing two
iterations at a time) but would not eliminate the problem entirely.

The problem lies in the call last (x :: xs), where information is lost.

We must specialize last for this call pattern.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

48/113

Example, optimized

The first step is to create a specialized function, last_cons.

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

and last_cons x xs =
last (x :: xs)

The equation last (x :: xs) = last_cons x xs holds (obviously).

We record (remember) this equation for later use.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

49/113

Example, optimized

The second step is to inline last into last_cons.

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

and last_cons x xs =
let xs = x :: xs in
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

50/113

Example, optimized

By inlining xs and exploiting case-of-known-constructor, we get:

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

and last_cons x xs =
match xs with
| [] -> x
| x :: xs -> last (x :: xs)

What should be the last step?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

51/113

Example, optimized

The last step is to replace last (x :: xs) with last_cons x xs.

There are two occurrences, one of which lies within last_cons itself:

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

and last_cons x xs =
match xs with
| [] -> x
| x :: xs -> last (x :: xs)

This exploits an equation that was recorded earlier.

We get the code that we would have written, with one iteration unrolled.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

52/113

Danger!

The correctness of exploiting an equation within itself is nonobvious.

Recall this situation:

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

and last_cons x xs =
last (x :: xs)

The equation last (x :: xs) = last_cons x xs holds (obviously).

There are two places where it can be used right now... What if we did so?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

53/113

Danger!

We get a non-terminating version of the loop:

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last_cons x xs

and last_cons x xs =
last_cons x xs

This “obviously correct” transformation is actually incorrect.

We have in fact rolled the loop so it jumps to itself after 0 iterations!

Exploiting x = v within itself leads to x = x, which is nonsensical.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

54/113

Summary

Call-pattern specialization is also known as constructor specialization.

It is simple, but runs a risk of generating uninteresting specializations
and a risk of nontermination at compile-time. Heuristics are needed.

Peyton Jones, Call-pattern specialisation for Haskell programs, 2007.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/spec-constr.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

55/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

56/113

Deforestation

Programs expressed in a high-level style often build intermediate data
structures (lists, trees, ...) which are immediately used and discarded.

They typically allow communication between a producer and a consumer.

Deforestation (Wadler, 1990) aims to get rid of them.

https://doi.org/10.1016/0304-3975(90)90147-A

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

57/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

58/113

Example

The composition of filter and map allocates an intermediate list.

As a direct attempt at deforestation, let us try and optimize it.

let bar p f xs =
List.filter p (List.map f xs)

Let us specialize for the call pattern List.filter p (List.map f xs)...

I am using an expression as a call pattern – this goes beyond GHC.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

59/113

Example

After creating a specialized copy
and inlining List.filter and List.map into it, we get:

let filter_map p f xs =
match

match xs with
| [] -> []
| x :: xs -> f x :: List.map f xs

with
| [] -> []
| x :: xs ->

if p x then x :: List.filter p xs
else List.filter p xs

let bar p f xs =
filter_map p f xs

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

60/113

Example

Performing case-case conversion yields:

let filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->

let x :: xs = f x :: List.map f xs in
if p x then x :: List.filter p xs
else List.filter p xs

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

61/113

Example

Deciding that e1 :: e2 is evaluated from left-to-right, we get:

let filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->

let x = f x in
let xs = List.map f xs in
if p x then x :: List.filter p xs
else List.filter p xs

Evaluation order is left undecided by OCaml.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

62/113

Example

We wisely choose to inline xs, as it is used only once (in each branch):

let filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->

let x = f x in
if p x then x :: List.filter p (List.map f xs)
else List.filter p (List.map f xs)

This is full β!

It is valid under call-by-need. (Assuming no side effects but divergence.)

It is invalid under call-by-value (with side effects), unless f is pure.

• f must not read or write mutable data, and must terminate.

The OCaml compiler won’t do this!

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

63/113

Example

We now recognize the call pattern List.filter p (List.map f xs).

let rec filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->

let x = f x in
if p x then x :: filter_map p f xs
else filter_map p f xs

We get the code that an OCaml programmer would write by hand.

No intermediate list! Successful deforestation.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

64/113

Summary

The equation List.filter p (List.map f xs) = filter_map p f xs

• holds under call-by-need;
• holds under call-by-value (with side effects) if f is pure.

Pure languages offer greater potential for aggressive optimization!

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

65/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

66/113

Idea 1: focus on lists

Focus on lists, a universal type for exchanging sequences of elements.

Some functions are list producers; some are list consumers.

Some, such as filter and map, are both. (Not a problem.)

Some, such as zip and unzip have two inputs or two outputs.

Composing these functions yields producer-consumer pipelines.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

67/113

Idea 2: use a custom internal data format

Producers and consumers use lists as an exchange format.

They can work internally using a different data representation.

They are then be wrapped in conversions to and from lists.

When a producer and consumer are composed,

• two conversions, to and from lists, should cancel out,
• so there remains to optimize a composition at the internal data type.

This is an instance of the worker/wrapper transformation.

Gill and Hutton, The worker/wrapper transformation, 2009.

http://www.cs.nott.ac.uk/~pszgmh/wrapper-extended.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

68/113

Idea 3: avoid recursion

The internal data format should have a nonrecursive type, so that:

• Most producers and consumers are not recursive!
• At least one of the conversions, to and from lists, must be recursive.

Two approaches, based on two internal data formats, have been proposed:

• shortcut deforestation, based on folds;
• stream fusion, based on streams.

Gill, Launchbury, Peyton Jones,
A short cut to deforestation, 1993.

Coutts, Leshchinskiy, Stewart, Stream fusion:
from lists to streams to nothing at all, 2007.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/deforestation-short-cut.pdf
http://fun.cs.tufts.edu/stream-fusion.pdf
http://fun.cs.tufts.edu/stream-fusion.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

69/113

The internal data format

In shortcut deforestation, a sequence is internally represented as a fold.

A fold is a function that allows traversing the sequence.

type ’a fold =
{ fold: ’b. (’a -> ’b -> ’b) -> ’b -> ’b }

It is a producer which pushes elements towards a consumer.

This is the standard Church encoding of lists.

Gill et al.’s paper does not explicitly use the above polymorphic type.
I follow them.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

70/113

Converting a list to a fold

This is OCaml’s List.fold_right, with the last two parameters swapped:

let rec foldr c n xs =
match xs with
| [] -> n
| x :: xs -> c x (foldr c n xs)

If xs is a list then fun c n -> foldr c n xs is the corresponding fold.

We could define:

let import (xs : ’a list) : ’a fold =
{ fold = fun c n -> foldr c n xs }

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

71/113

Converting a fold to a list

To convert a fold to a list, we apply it to “cons” and “nil”:

let build g =
g (fun x xs -> x :: xs) []

We could define:

let export ({ fold } : ’a fold) : ’a list =
build fold

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

72/113

Isomorphism

The idea is that we have an isomorphism between lists
and (certain well-behaved) folds.

The following law holds:

• export (import xs) is observationally equivalent to xs.

The reverse law holds if f is pure and terminating:

• import (export f) is equivalent to f.

Naturally, the law that’s needed when composing two components is...

...the second one.

Let’s just pretend that it holds unconditionally.

Challenge: formalize build/foldr in Coq and establish the isomorphism.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

72/113

Isomorphism

The idea is that we have an isomorphism between lists
and (certain well-behaved) folds.

The following law holds:

• export (import xs) is observationally equivalent to xs.

The reverse law holds if f is pure and terminating:

• import (export f) is equivalent to f.

Naturally, the law that’s needed when composing two components is...

...the second one.

Let’s just pretend that it holds unconditionally.

Challenge: formalize build/foldr in Coq and establish the isomorphism.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

73/113

Isomorphism

In Gill et al.’s paper, the second law is known as “the foldr/build rule”:

foldr c n (build g) = g c n

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

74/113

An example consumer-and-producer

In the list library, map is written as follows:

let map f xs =
build (fun c n ->

foldr (fun x xs -> c (f x) xs) n xs
)

The list xs is imported using foldr, yielding a fold.

A new fold is then constructed on top of it.

This new fold is converted back to a list using build.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

75/113

An example consumer-and-producer

Similarly, filter is written as follows:

let filter p xs =
build (fun c n ->

foldr (fun x xs -> if p x then c x xs else xs) n xs
)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

76/113

Back to (filter; map)

What happens when we compose filter and map?

let bar p f xs =
filter p (map f xs)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

77/113

Back to (filter; map)

Inlining filter and map yields:

let bar p f xs =
build (fun c n ->

foldr
(fun x xs -> if p x then c x xs else xs)
n
(build (fun c n ->

foldr (fun x xs -> c (f x) xs) n xs
))

)

We recognize foldr _ _ (build _).

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

78/113

Back to (filter; map)

Exploiting the equation foldr c n (build g) = g c n yields:

let bar p f xs =
build (fun c n ->

let c x xs = if p x then c x xs else xs in
foldr (fun x xs -> c (f x) xs) n xs

)

This is where we save an intermediate list.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

79/113

Back to (filter; map)

Inlining c yields:

let bar p f xs =
build (fun c n ->

foldr (fun x xs ->
let x = f x in
if p x then c x xs else xs

) n xs
)

This is where filter and map come into contact and combine.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

80/113

Back to (filter; map)

We are essentially finished, but can work a little more.

Inlining build yields:

let bar p f xs =
foldr (fun x xs ->

let x = f x in
if p x then x :: xs else xs

) [] xs

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

81/113

Back to (filter; map)

Call-pattern specialization for foldr yields:

let rec filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->

let xs = filter_map p f xs in
let x = f x in
if p x then x :: xs else xs

let bar p f xs =
filter_map p f xs

Assuming the language is pure,
or assuming p and f are pure, we can inline xs...

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

82/113

Back to (filter; map)

Inlining xs yields:

let rec filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->

let x = f x in
if p x then x :: filter_map p f xs
else filter_map p f xs

We again get the code that an OCaml programmer would write by hand.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

83/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

84/113

The internal data format

In stream fusion, a sequence is internally represented as a stream.

A stream is a function that allows querying the sequence.

type ’a stream =
| S:

(* If you have a pair of a producer function... *)
(’s -> (’a, ’s) step)
(* ...and an initial state, *)
* ’s ->
(* then you have a stream. *)
’a stream

It is a producer from which a consumer can pull elements.

A typical object-oriented idiom, analogous to Java iterators, but not
inherently mutable.

This is an existential type, very much like the type of closures in week 3.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

85/113

The internal data format

Querying a stream produces a result of the following form:

type (’a, ’s) step =
| Done (* finished *)
| Yield of ’a * ’s (* an element and a new state *)
| Skip of ’s (* just a new state - please ask again *)

The types stream and step are nonrecursive.

This, and the existence of Skip, allows most stream producers to be
nonrecursive functions.

A consumer must ask, ask, ask until a non-Skip result is produced.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

86/113

Converting a list to a stream

This conversion function is nonrecursive:

let stream (xs : ’a list) : ’a stream =
let next xs =

match xs with
| [] -> Done
| x :: xs -> Yield (x, xs)

in
S (next, xs)

Exercise: Here, what is the type ’s of states?

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

87/113

Converting a list to a stream

The local function next is in fact closed, so one can also write:

let stream_next xs =
match xs with
| [] -> Done
| x :: xs -> Yield (x, xs)

let stream (xs : ’a list) : ’a stream =
S (stream_next, xs)

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

88/113

Converting a stream to a list

This is a recursive consumer function:

let unstream (S (next, s) : ’a stream) : ’a list =
let rec unfold s =

match next s with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s

in
unfold s

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

89/113

Isomorphism

There is an isomorphism between lists and (certain) streams.

The following law holds:

• unstream (stream xs) is observationally equivalent to xs.

The reverse law holds if str is pure and terminating:

• stream (unstream str) is equivalent to str.

Again, we need the second law, known as “stream/unstream”.

Let’s pretend that it holds unconditionally.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

90/113

Examples of stream producers

How would you implement a singleton stream?

let return (x : ’a) : ’a stream =
let next s =

if s then Yield (x, false) else Done
in
S (next, true)

The type of s is bool: either we have already yielded an element,
or we have not.

Each stream producer freely chooses its type of internal states.

Exercise: Write interval of type int -> int -> int stream.

Exercise: Write append of type ’a stream -> ’a stream -> ’a stream.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

90/113

Examples of stream producers

How would you implement a singleton stream?

let return (x : ’a) : ’a stream =
let next s =

if s then Yield (x, false) else Done
in
S (next, true)

The type of s is bool: either we have already yielded an element,
or we have not.

Each stream producer freely chooses its type of internal states.

Exercise: Write interval of type int -> int -> int stream.

Exercise: Write append of type ’a stream -> ’a stream -> ’a stream.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

91/113

An example consumer-and-producer

Here is map on streams, known as S.map in the following:

let map (f : ’a -> ’b) (S(next, s) : ’a stream) : ’b stream =
let next s =

match next s with
| Done -> Done
| Yield (x, s) -> Yield (f x, s)
| Skip s -> Skip s

in
S (next, s)

Again, not a recursive function!

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

92/113

An example consumer-and-producer

Composing with conversions to and from streams yields map on lists:

let map (f : ’a -> ’b) (xs : ’a list) : ’b list =
unstream (S.map f (stream xs))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

93/113

An example consumer-and-producer

Here is filter on streams, known as S.filter in the following:

let filter (p : ’a -> bool) (S (next, s) : ’a stream) =
let next s =

match next s with
| Done -> Done
| Yield (x, s) -> if p x then Yield (x, s) else Skip s
| Skip s -> Skip s

in
S (next, s)

Again, not a recursive function!

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

94/113

An example consumer-and-producer

Composing with conversions to and from streams yields filter on lists:

let filter (p : ’a -> bool) (xs : ’a list) : ’a list =
unstream (S.filter p (stream xs))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

95/113

Back to (filter; map)
What happens when we compose filter and map?

let bar p f xs =
L.filter p (L.map f xs)

let bar p f xs =
let next s =

match s with
| [] -> Done
| x :: s ->

let y = f x in if p y then Yield (y, s) else Skip s
in
let rec unfold s =

match next s with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s

in
unfold xs

let bar p f xs =
let rec unfold s =

match
match s with
| [] -> Done
| x :: s ->

let y = f x in if p y then Yield (y, s) else Skip s
with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s

in
unfold xs

let bar p f xs =
let rec unfold s =

match s with
| [] -> []
| x :: s ->

let y = f x in
if p y then y :: unfold s else unfold s

in
unfold xs

let rec unfold p f s =
match s with
| [] -> []
| x :: s ->

let y = f x in
if p y then y :: unfold p f s
else unfold p f s

let bar p f xs =
unfold p f xs

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

96/113

Back to (filter; map)

Inline filter and map:

let bar p f xs =
unstream (S.filter p (stream (

unstream (S.map f (stream xs))
)))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

97/113

Back to (filter; map)

Use the stream/unstream rule:

let bar p f xs =
unstream (S.filter p (S.map f (stream xs)))

S.filter and S.map come in contact.

Let’s inline the hell out of this code!

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

98/113

Back to (filter; map)

Inline stream:

let bar p f xs =
unstream (S.filter p (S.map f (S (stream_next, xs))))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

99/113

Back to (filter; map)

Inline S.map:

let bar p f xs =
let next s =

match stream_next s with
| Done -> Done
| Yield (x, s) -> Yield (f x, s)
| Skip s -> Skip s

in
unstream (S.filter p (S (next, xs)))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

100/113

Back to (filter; map)

Inline stream_next:

let bar p f xs =
let next s =

match
match s with
| [] -> Done
| x :: s -> Yield (x, s)

with
| Done -> Done
| Yield (x, s) -> Yield (f x, s)
| Skip s -> Skip s

in
unstream (S.filter p (S (next, xs)))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

101/113

Back to (filter; map)

Perform case-of-case conversion, followed with case-of-constructor:

let bar p f xs =
let next s =

match s with
| [] -> Done
| x :: s -> Yield (f x, s)

in
unstream (S.filter p (S (next, xs)))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

102/113

Back to (filter; map)

Inline S.filter:

let bar p f xs =
let next s =

match s with
| [] -> Done
| x :: s -> Yield (f x, s)

in
let next s =

match next s with
| Done -> Done
| Yield (x, s) -> if p x then Yield (x, s) else Skip s
| Skip s -> Skip s

in
unstream (S (next, xs))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

103/113

Back to (filter; map)

Inline the first next function into the second one:

let bar p f xs =
let next s =

match
match s with
| [] -> Done
| x :: s -> Yield (f x, s)

with
| Done -> Done
| Yield (x, s) -> if p x then Yield (x, s) else Skip s
| Skip s -> Skip s

in
unstream (S (next, xs))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

104/113

Back to (filter; map)

Apply case-of-case and case-of-constructor again:

let bar p f xs =
let next s =

match s with
| [] -> Done
| x :: s ->

let y = f x in if p y then Yield (y, s) else Skip s
in
unstream (S (next, xs))

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

105/113

Back to (filter; map)

Inline unstream:

let bar p f xs =
let next s =

match s with
| [] -> Done
| x :: s ->

let y = f x in if p y then Yield (y, s) else Skip s
in
let rec unfold s =

match next s with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s

in
unfold xs

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

106/113

Back to (filter; map)

Inline next into unstream:

let bar p f xs =
let rec unfold s =

match
match s with
| [] -> Done
| x :: s ->

let y = f x in if p y then Yield (y, s) else Skip s
with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s

in
unfold xs

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

107/113

Back to (filter; map)

Apply case-of-case again, then a couple rules, then case-of-constructor:

let bar p f xs =
let rec unfold s =

match s with
| [] -> []
| x :: s ->

let y = f x in
if p y then y :: unfold s else unfold s

in
unfold xs

Exercise: Clarify which rewriting rules are used here.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

108/113

Back to (filter; map)

(Optional.) Hoist unfold out. (This is λ-lifting.)

let rec unfold p f s =
match s with
| [] -> []
| x :: s ->

let y = f x in
if p y then y :: unfold p f s
else unfold p f s

let bar p f xs =
unfold p f xs

We get the code that an OCaml programmer would write by hand.

No intermediate data structure! Successful deforestation again.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

109/113

What’s the point?

Why is stream fusion preferable to shortcut deforestation?

Shortcut deforestation cannot express foldl in a nice way.

Exercise: Implement foldl on streams, then on lists.

Exercise: Find out how foldl (+) 0 (append xs ys) is optimized.
You should reach a sequence of two loops – no memory allocation.

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

110/113

The way of the future?

Do not let the compiler’s heuristics decide
which reductions and simplifications should take place at compile time.

Instead, give explicit staging annotations to distinguish
pipeline-construction-time computation and pipeline-runtime computation!

Relying on a general-purpose compiler for library optimization is
slippery. [...] A compiler offers no guarantee that optimization will
be successfully applied. [...] An innocuous change to a program
[can] make it much slower.

Kiselyov, Biboudis, Palladinos, Smaragdakis,
Stream fusion, to completeness, 2017.

https://yanniss.github.io/streams-popl17.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

111/113

1 Equational reasoning

2 Inlining and simplification

3 Call-pattern specialization

4 Deforestation

A direct approach

Shortcut deforestation

Stream fusion

5 Conclusion

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

112/113

Program derivation

Equational reasoning can be used not just by compilers, but also by
programmers, by hand.

Starting from a simple, inefficient program, derive efficient code via a
series of rewriting steps.

See my blog post on a derivation of Knuth-Morris-Pratt.

Supercompilation can do this, too!

Secher and Sørensen, On Perfect Supercompilation, 1999.

http://gallium.inria.fr/blog/kmp/
http://repository.readscheme.org/ftp/papers/topps/D-377.pdf

MPRI 2.4
Optimization

François
Pottier

Equational
reasoning

Inlining

Call-pattern
specializa-
tion

Deforestation
A direct
approach

Shortcut
deforestation

Stream fusion

Conclusion

113/113

A few things to remember

• Equational reasoning can be a powerful means of transforming or
deriving programs.

• λ-calculus-based (intermediate) languages allow expressing a wide
range of program transformations and optimizations.

• Side effects (non-termination, mutable state...) complicate matters.

	Equational reasoning
	Inlining and simplification
	Call-pattern specialization
	Deforestation
	A direct approach
	Shortcut deforestation
	Stream fusion

	Conclusion

