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Why formalize programming languages?

iy To obtain precise definitions of programming languages, including:

mechanize?

Nominal

de Bruin

dynamic semantics;
type systems, sometimes known as “static semantics”.

To obtain rigorous proofs of soundness for tools such as

interpreters,

compilers,

type systems (“well-typed programs do not go wrong”),
type-checkers and type inference engines,

static analyzers (e.g. abstract interpreters),

program logics (e.g. Hoare logic, separation logic),

deductive program provers (e.g. verification condition generators).
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Challenge 1: Scale

Hand-written proofs have difficulty scaling up:

e From minimal calculi (A, 7) and toy languages (IMP, MiniML) to large
real-world languages such as Java, C, JavaScript, ...

o From textbook compilers to multi-pass optimizing compilers producing
code for real processors.

o From textbook abstract interpreters to scalable and precise static
analyzers such as Astrée.
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Why
mechanize?
Hand-written proofs are seldom trustworthy.
¢ Authors struggle with huge LaTeX documents.
e » Reviewers give up on checking huge but boring proofs.
o Proofs written by computer scientists are boring:
they read as if the author is programming the reader.
John C. Mitchell

e Proof cases are omitted because they are “obvious”
or “analogous to the previous case”.
e |t is difficult to maintain hand-written proofs as the definitions evolve.
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mechanize? Mechanized theorem proving has made great progress.

Landmark examples in mathematics:
e the 4-colour theorem, Haken & Appel (1976), Gonthier & Werner

o (2005);
¢ the Feit-Thompson theorem, Gonthier et al. (2013);

o Kepler's conjecture, Hales et al. (2015).
Programming language theory is a good match for proof assistants:
o discrete objects (trees); no reals, no analysis, no topology...

e large definitions; proofs with many similar cases;
e syntactic techniques (induction); few deep mathematical concepts.
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Why

mechanize?

In 2005, Aydemir et al. challenged the POPL community:

p How close are we to a world where every paper on programming
languages is accompanied by an electronic appendix with
machine-checked proofs?
12 years later, about 20% of the papers at recent POPL conferences come
with such an electronic appendix.



MPRI 2.4

Towards
machine- Proof assistants

checked
proofs

Francois
Pottier

Why An interactive proof assistant offers:
mechanize?

o A formal specification language,
in which definitions are written and theorems are stated.
¢ A set of commands for building proofs,
B either automatically or interactively.
¢ Often, an independent, automated proof checker,
so the above commands do not have to be trusted.
A Mathematical Assistant satisfying the possibility of
independent checking by a small program is said to satisfy
the de Bruijn criterion.
Barendregt and Wiedijk,
The Challenge of Computer Mathematics, 2005.

Popular proof assistants include Coq, Agda, HOL4, Isabelle/HOL...


http://www.cs.ru.nl/~freek/notes/RSpaper.pdf
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Coq offers a pure functional programming language in the style of ML,
with recursive functions and pattern-matching.

Cogina

el Fixpoint factorial (n: nat) :=
match n with

Nominal | 0 => 1

e | S p=>n * factorial p
end.

Fixpoint concat (A: Type) (xs ys: list A) :=
match xs with

| nil => ys
| x :: xs => x :: concat xs ys
end.

The language is total: all functions terminate. This is enforced by requiring
every recursive call to be decreasing w.r.t. the subterm ordering.
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Mathematical logic

Propositions can be expressed in this language. They have type Prop.

Definition divides (a b: N) := exists n: N, b =n * a.

Theorem factorial_divisors:
forall n i, 1 <= i <= n -> divides i (factorial n).

Definition prime (p: N) :=
p > 1 /\ (forall d, dividesdp ->d=1\/d = p).

Theorem Euclid:
forall n, exists p, p >= n /\ prime p.

The standard logical connectives and quantifiers are available.
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Inductive types

An inductive type is a data type.
It is equipped with a finite number of constructors.

Its inhabitants are generated by (finite, well-typed) applications of the
constructors.

Inductive nat: Type :=
| 0: nat
| S: nat -> nat.

Inductive list: Type -> Type :=
| nil: forall A, list A
| cons: forall A, A -> list A -> list A.

E.g., the inhabitants of nat are 0, S 0, S (S 0), etc.

This is well suited to describe the syntax of a programming language.
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Inductive predicates

An inductive predicate is equipped with a finite number of constructors,
and is generated by (finite, well-typed) applications of the constructors.

Inductive even: nat -> Prop :=
| even_zero:
even 0O
| even_plus_2:
forall n, even n -> even (S (S n)).

On paper, this is typically written in the form of inference rules:
nis even

0is even S (s n)iseven

The inhabitants of the type even n can be thought of as derivation trees
whose conclusion is even n.
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® Representing abstract syntax with binders
On paper: the nominal representation

In a machine: de Bruijn’s representation
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Binding and a-equivalence

Most programming languages provide constructs that bind variables, e.g.:

o function abstractions (in terms): Ax.t

e |ocal definitions (in terms): let x =tin t

e quantifiers (in types): Ya.a — «a
a-equivalence is a relation that allows renamings of bound variables, e.qg.:

AxX.x+1=, Ay.y+1 Ya.a list =, VB. B list

a-equivalence can be defined as follows:

Ax.t =, /\y.(;)t if y ¢ fv(Ax.t)
where (7) swaps all occurrences of x and y
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Implicit a-equivalence

On paper, it is customary to confuse a-equivalence =, with equality =.
This plays a role, for instance, in the definition of System F.

This is the traditional rule for type-checking a function application:

Mre:7-1 Mlre:t

Frre e : 1
The rule should be written as follows, if a-equivalence was explicit:

Flrrey:t—>1 Mees: 1o T=, T2

Flreie: 1

In simply-typed A-calculus, this issue does not arise, as there are no
quantifiers in types: a-equivalence and equality of types coincide.
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Explicit a-equivalence

In principle, one should distinguish between:
e trees versus equivalence classes of trees;
e equality = versus a-equivalence =,.

This sounds easy enough, but leads to subtleties when defining
mathematical functions that consume or produce trees... such as:

e program transformations, which produce and consume syntax trees;
e proofs, which produce and consume derivation trees.
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Functions on equivalence classes

To define a function f from T/=, to T/=,,
it suffices to first define a relation F between T and T,

and to require two conditions:
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Functions on equivalence classes

To define a function f from T/=, to T/=,,
it suffices to first define a relation F between T and T,

and to require two conditions:
e every tree is a-equivalent to some tree in the domain of F:

YteT AV, uUeT t=s, /AU FU

—note: the domain of F need not be T
— “without loss of generality, let us assume that x does not occur in ...”
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Functions on equivalence classes

To define a function f from T/=, to T/=,,
it suffices to first define a relation F between T and T,

and to require two conditions:
e every tree is a-equivalent to some tree in the domain of F:

YteT AV, uUeT t=s, /AU FU

— note: the domain of F need not be T

— “without loss of generality, let us assume that x does not occur in .

e F is compatible with a-equivalence:
Vt,t',uu eT tFunt FUAts,t u=s,U
—note: F need not be deterministic (single-valued)

— nondeterminism is fine as long as all choices yield a-eq. results
— “let us pick a name x outside of ...”

4
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Free variables

The classic definition of the set of the free variables of a A-term:

fv(x) = {x}
fv(Ax.t) = fv(t) \ {x} — no requirement on x
fv(t &) = fv(ty) U fv(t)

A total function from T to sets of names.
Condition 1 is vacuously satisfied (the relation is defined everywhere).
Condition 2 requires checking the following equality:
fv(Ax.t) = fv(Ay.())t)  wherey ¢ fv(Ax.1)
This follows from the fact that fv is equivariant, i.e., commutes with swaps:
fv(rt) = mfv(t)
and from the fact that neither x nor y appear in the set fv(Ax.t).

Thus, fv gives rise to a total function from T/=, to sets of names.
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Capture-avoiding substitution

The classic definition of capture-avoiding substitution:

x[u/x]=u
ylu/x] =y if y #x
(Az.t)[u/x] = Az. tu/X] if z ¢ fv(u) U {x} — avoid capture!

(t t2)[u/x] = ti[u/x] to[u/X]
A partial function from T to T.
Condition 1 holds, as only a finite number of choices for z are forbidden.
Condition 2 requires checking:

Az tu/x] =, AZ'. t'[u/X] where z,2’ ¢ fv(u) U{x} and Az.t =, AZ".t
which follows, again, from the fact that substitution is equivariant.

Thus, this gives rise to a total function from T/=, to T/=,.
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Naive substitution

Naive substitution does not have the side condition z ¢ fv(u) U {x}.

It is a total function from T to T,

but fails condition 2,
hence does not give rise to a function from T/=, to T/=,.

Ay x+y)2xy/x] = Ay.2xy+y — naive

(Ay-x +y)[2xy/x]
(Az.x+2)2xy/x] = Az.2Xy+z

— capture-avoiding
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Representations of syntax

How should syntax with binding be represented in a proof assistant?

Several representations come to mind:
e equivalence classes of trees — the nominal approach (Pitts, 2006);
de Bruijn notation — used in this course (de Bruijn, 1972);
e (parametric) higher-order abstract syntax (Chlipala, 2008);
the locally nameless representation (Charguéraud, 2009);

e and many more.

One should choose a representation for which the proof assistant has
good support.


https://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf
https://www.win.tue.nl/automath/archive/pdf/aut029.pdf
http://adam.chlipala.net/papers/PhoasICFP08/
https://www.chargueraud.org/research/2009/ln/main.pdf
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What about the nominal approach?

The nominal approach is prevalent in informal (paper) proofs.
It is implemented in Nominal Isabelle (Urban, 2008).
e Urban and Narboux (2008) present typical proofs
about operational semantics.
It is not well supported in Coq, perhaps for engineering reasons.

e Cohen (2013) shows how to use quotients in Coq (when they exist)
and how to construct them (up to certain axioms or hypotheses).


https://nms.kcl.ac.uk/christian.urban/Publications/nom-tech.pdf
https://nms.kcl.ac.uk/christian.urban/Nominal/manual/SOS.pdf
http://perso.crans.org/cohen/papers/quotients.pdf
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What about other approaches?

The POPLmark challenge proposes a benchmark problem:
a proof of type soundness for F...

15 solutions have been proposed, using 8 different representations
in 7 different proof assistants.

No consensus, yet!


https://www.seas.upenn.edu/~plclub/poplmark/

@ Why mechanize definitions and proofs?

® Coqin a nutshell

® Representing abstract syntax with binders
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In a machine: de Bruijn’s representation
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de Bruijn indices

A simple idea: don’t use names.
Instead, use pointers from variables back to their binding site.
A second idea: use relative pointers, encoded as natural integers.

¢ 0 denotes the nearest enclosing A,
i.e., the most recently bound variable;

¢ 1 denotes the next enclosing A, and so on.

Ax.x is AO.
AMfAx.f xis AA(10).
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Why is this a good idea?

de Bruijn syntax has several strengths:
e it is easily defined;
e itis inductive — terms are trees, no quotient is required;
e itis canonical — a-equivalence is just equality.

Its drawbacks are well-known, too:
o terms are more difficult to read — a printer may be needed;
o definitions and theorems can seem difficult to write and read
— mostly a matter of habit?
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A-terms in de Bruijn’s notation

The syntax of A-calculus is simple:
to=x|At|tt where x e N

In Coq:

Inductive term :=
| Var: nat -> term
| Lam: term -> term
| App: term -> term -> term.
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Suggested exercises

Exercise: In OCaml, implement conversions between the nominal
representation and de Bruijn’s representation, both ways.

Exercise: In OCaml, implement an exhaustive enumeration of the A-terms
of size s and with at most n free variables. (Let variables have size 0; let
A-abstractions and applications contribute 1.)

Exercise: Use this exhaustive enumeration to test that the above
conversions are inverses of each other.
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— Substitution is the éminence grise of the A-calculus.
Abadi, Cardelli, Curien, Lévy, Explicit substitutions, 1990.


http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-54.pdf
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Substitutions

Let a substitution o be a total function of variables IN to terms T.

It can also be thought of as an infinite sequence ¢(0) - o(1) - ...

Let id be the identity substitution: id(x) = x.
e0-1-2- ...

Let +i be the lift substitution: (+i)(x) = x +i.
o j-(i+1)-(i+2)- ...

Let t - 0 be the cons substitution that maps 0 to t and x + 1 to a(x).
e t-0(0)-0(1)- ...

id can in fact be viewed as sugar for 0 - (+1).
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Substitution application and composition

Can we define t[o], the application of the substitution ¢ to the term t?
It should satisfy the following laws:
X[o] = a(x)

(At)[o] =7
(t &)[o] = ti[0] to[o]
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Substitution application and composition

Can we define t[o], the application of the substitution ¢ to the term t?
It should satisfy the following laws:
X[o] = a(x)

(At)[o] = A(t[?])
(t &)[o] = ti[0] to[o]
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Substitution application and composition

Can we define t[o], the application of the substitution ¢ to the term t?
It should satisfy the following laws:
X[o] = a(x)

(At)[o] = A(t[0 - 7])
(t &)[o] = ti[0] to[o]



MPRI 2.4
Towards
machine-
checked
proofs

Francois
Pottier

Nominal
de Bruijn

Substitution application and composition

Can we define t[o], the application of the substitution ¢ to the term t?
It should satisfy the following laws:

X[o] = o(x)
(At)[o] = A(t[0 - (o +1)])
(t &)[o] = ti[0] to[o]

and the composition of two substitutions o1 ; o2 should satisfy:

(01; 02)(x) = (01(x))[o2]
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Substitution application and composition

Can we define t[o], the application of the substitution ¢ to the term t?
It should satisfy the following laws:

x[o] = a(x)
(AD)[o] = A(t[Nr o)
(t t)[0] = t[0] &o[o]

and the composition of two substitutions o1 ; o2 should satisfy:

(01; 02)(x) = (01(x))[o2]

where ffo stands for 0 - (o; +1)
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Substitution application and composition

Can we define t[o], the application of the substitution ¢ to the term t?
It should satisfy the following laws:

x[o] = a(x)
(AD)[o] = A(t[No]) where ffo stands for 0 - (o; +1)

(t &2)[o] = ti[0] to[o]
and the composition of two substitutions o1 ; o2 should satisfy:
(015 02)(x) = (01(x))[02]
These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t[+i] first (“lift"),
then ¢; +i, whence 1 ¢, whence t[o] (“subst”).
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de Bruijn algebra

The following equations are sound, that is, valid:

(At)[o] = A(t[O - (o; +1)]) id;o=0¢
(t t)[o] = t[o] ta[0] o;id=o
O[tG]:t (0’1;0'2);(73:0'1;(0'2;0'3)
(+1);(t-0)=0 (t-01); 02 = tloa] - (01; 02)

Furthermore, they are complete (Schéfer et al., 2015).

That is, if an equation based on the following grammar is valid, then it
logically follows from the above equations.

t O|At|tt|to]| T
o == H1|t-ol|o;0l|X

Schéfer et al. also prove that validity is decidable.


https://www.ps.uni-saarland.de/Publications/documents/SchaeferEtAl_2015_Completeness.pdf
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de Bruijn algebra

Decidability means that the machine can answer questions for us.

Does t[id] = t hold? Yes.

Does t[o1][o2] = t[o1; 02] hold? Yes.

And so on, and so forth.

For proofs of the above two equations, see Schafer et al., Fact 6.

Yet, we do not really care about these proofs —a machine can find them.
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Coq tactics for de Bruijn algebra

The Coq library Autosubst offers two tactics:
e autosubst proves an equation between terms or substitutions;
e asimpl simplifies a goal in which a term or substitution appears.


https://www.ps.uni-saarland.de/autosubst/
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A-terms with AutoSubst

The syntax of A-calculus can be declared as follows:

Inductive term :=
| Var: var -> term

| Lam: {bind term} -> term
| App: term -> term -> term.

AutoSubst defines var as a synonym for nat
and {bind term} as a synonym for term.

AutoSubst defines substitution application, composition, etc., for us.
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01, 02

o

"o

tlu-id]

AutoSubst key notations

t .: sigma substitution “cons”
ren (+i) the substitution +i
ids the identity substitution
t. [sigmal] substitution application

sigmal >> sigma?2 substitution composition

up sigma taking a substitution under a binder
upn n sigma taking a substitution under n binders
t. [u/] substituting u for 0 in t
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“lift” as end-of-scope

Suppose we are writing a program in de Bruijn’s notation.

Suppose we are in a context where n variables exist
and we wish to refer to a subterm t that has n — 1 free variables.
That is, t does not know about one of our variables, say i, where 0 < i < n.

We cannot just refer to t, as some indices would be off by one.
Instead, we must use t[ff' (+1)].

Ugly, low-level index arithmetic? No: read it as an end-of-scope mark.
Adopt a nicer notation for it, say “eos i in t”.

There is no syntax for it in the A-calculus; it is a meta-level notation.

A related, object-level end-of-scope construct, “abdmal”,
has been studied by Hendriks and van Oostrom (2003).


https://doi.org/10.1007/978-3-540-45085-6_11
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Calculi of explicit substitutions

Similarly, we have viewed substitution application as a meta-level
operation. There is no syntax for it in the A-calculus.

In the Ao-calculus, however, there is syntax for substitutions and
substitution application, and a set of small-step reduction rules that explain
how substitutions interact with A-abstractions and applications.

Abadi, Cardelli, Curien, Lévy, Explicit substitutions, 1990.

Curien, Hardin, Lévy, Confluence properties
of weak and strong calculi of explicit substitutions, 1992.


http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-54.pdf
https://hal.inria.fr/inria-00077189/
https://hal.inria.fr/inria-00077189/
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