Deriving, transforming, optimizing programs

MPRI 2.4

François Pottier

2017

Let us be dreamers

An old dream:

- write high-level, abstract, modular code;
- let the compiler produce low-level, efficient code.
"Zero-cost abstraction". (A C++/Rust slogan.)
(Pure) functional prog. languages should lend themselves well to this idea.
- No mutable state. Aliasing not a danger. Syntactically obvious where each variable receives its value.
- Equational reasoning. Programs denote values. Replace equals with equals.
- Simple, rich language. Many transformations easily expressed as rewriting rules.

Perhaps not quite true (do need side effects in some form), but let's see.

MPRI 2.4 Optimization François
Pottier
(1) Equational reasoning

Equational reasoning Inlining

Call-pattern specialization

Deforestation
A direct
approach

Shortcut

deforestation
Stream fusion
Conclusion
(2) Inlining and simplification
(3) Call-pattern specialization
(4) Deforestation

A direct approach
Shortcut deforestation
Stream fusion
(5) Conclusion

Equational reasoning

If two terms t_{1} and t_{2} are observationally equivalent, and if we have reason to believe that t_{2} is more efficient than t_{1},

- or that this rewriting step will enable further optimizations, then we can optimize a program by replacing t_{1} with t_{2}.

Equality

Pottier

Equational reasoning
Inlining

In a a pure \& total language, such as Coq, a term is equal to its value. Two terms that have the same value are equal.

Equal terms are interchangeable - Leibniz's Principle.
Life in an ideal (mathematical) world. See DemoEqReasoning.

Observational equivalence

Fix some notion of "success", e.g. t succeeds iff t computes 42.

- Note that this notion depends on the evaluation strategy. With respect to this notion of success, or "observation", t_{1} and t_{2} are observationally equivalent $\left(t_{1} \simeq t_{2}\right)$ iff, for every (well-typed) context C, $C\left[t_{1}\right]$ succeeds if and only if $C\left[t_{2}\right]$ succeeds.

Equational reasoning Inlining

When is a rewriting step valid?

Is full β a valid law?

$$
\left(\lambda x . t_{2}\right) t_{1} \simeq t_{2}\left[t_{1} / x\right]
$$

When is a rewriting step valid?

Is full β a valid law?

$$
\left(\lambda x \cdot t_{2}\right) t_{1} \simeq t_{2}\left[t_{1} / x\right]
$$

In a pure \& total language, such as Coq, yes. Part of definitional equality. Under call-by-name, even in the presence of non-termination, yes.

Under call-by-value, in the presence of non-termination or other side effects, no.

full β is invalid under call-by-value

Repeat after me:

> full β is invalid under call-by-value
> full β is invalid under call-by-value
> full β is invalid under call-by-value

After 20+ years, I keep making this mistake from time to time!
$\left(\lambda x . t_{2}\right) t_{1}$ cannot be "simplified" to $t_{2}\left[t_{1} / x\right]$
let $x=t_{1}$ in t_{2} cannot be "simplified" to $t_{2}\left[t_{1} / x\right]$

What about call-by-value? β_{v}

Under call-by-value, in the presence of side effects, full β is invalid.
One must restrict it to the case where t_{1} is pure.

$$
\left(\lambda x . t_{2}\right) t_{1} \longrightarrow t_{2}\left[t_{1} / x\right] \quad \text { provided } t_{1} \text { is pure }
$$

Roughly, a closed term t is pure if there exists a value v such that t reduces to v, independently of the store.

Whether a non-closed term t is closed depends on purity hypotheses about its free variables. E.g., is " $f x$ " pure? Yes, IF f has no side effects.

As a simple special case, one can use β_{v}, which is valid:

$$
\left(\lambda x . t_{2}\right) v_{1} \longrightarrow t_{2}\left[v_{1} / x\right]
$$

This follows from the theory of parallel reduction.
See LambdaCalculusStandardization/pcbv_adequacy.

When is a rewriting step profitable?

When it is valid, is full β a profitable optimization?

$$
\left(\lambda x . t_{2}\right) t_{1} \longrightarrow t_{2}\left[t_{1} / x\right]
$$

When is a rewriting step profitable?

When it is valid, is full β a profitable optimization?

$$
\left(\lambda x . t_{2}\right) t_{1} \longrightarrow t_{2}\left[t_{1} / x\right]
$$

Under call-by-name, it is safe for time and space, but can increase code size.

Under call-by-need, if x has multiple occurrences in t_{2}, or if x occurs under a λ within t_{2}, then the right-hand side risks repeating the computation of t_{1}, wasting time and space. This danger exists even if t_{1} is a value!

In short, this optimization step seems profitable when x is used "at most once" in t_{2}, for a suitable definition of this notion.

Turner, Wadler, Mossin, Once upon a type, 1995.
Peyton Jones, Santos, A transformation-based optimiser for Haskell, 1997.

Summary so far

A proposed rewriting rule $t_{1} \longrightarrow t_{2}$ is valid if $t_{1} \simeq t_{2}$ holds.

- This is influenced by the evaluation strategy, the presence or absence of side effects, and type hypotheses.
A proposed rewriting rule $t_{1} \longrightarrow t_{2}$ may or may not be profitable.
- This is influenced by many factors, including further optimizations and transformations.

So far, I have discussed full β versus β_{v}.
If the language has a primitive construct, then an analogous discussion applies to "full let" versus let ${ }_{v}$.

$$
\begin{array}{rll}
\text { let } x=t_{1} \text { in } t_{2} & \longrightarrow & t_{2}\left[t_{1} / x\right] \\
\text { let } x=v_{1} \text { in } t_{2} & \longrightarrow & t_{2}\left[v_{1} / x\right]
\end{array}
$$

η-reduction and η-expansion

Is this optimization valid?

$$
\lambda x . t x \simeq t \quad \text { provided } x \notin f v(t)
$$

In a pure \& total language, such as Coq, yes. Part of definitional equality. Under call-by-name, in the presence of non-termination, I think it is...

Under call-by-value, in the presence of side effects, it definitely isn't. When it is valid, is it profitable? Possibly. E.g., after a naïve CPS transformation, η-reduction turns $\lambda x . k x$ into k, which amounts to tail call optimization.

Yet η-reduction can be costly and η-expansion can be profitable. Tricky!

(1) Equational reasoning

Equational reasoning

Inlining
Call-pattern specialization

Deforestation A direct approach Shortcut deforestation
Stream fusion

(2) Inlining and simplification

(3) Call-pattern specialization
(4) Deforestation

A direct approach
Shortcut deforestation
Stream fusion
(5) Conclusion

What is inlining?

Inlining is the action of replacing a call to a known function with the suitably instantiated body of this function.

So, is inlining just another name for β_{v} ?

$$
\left(\lambda x . t_{2}\right) v_{1} \longrightarrow t_{2}\left[v_{1} / x\right]
$$

What is inlining?

No. Inlining can be more accurately described by several rewriting rules:
Looking up a definition: (IR1)

$$
\text { let } x=v \text { in } C[x] \quad \longrightarrow \quad \text { let } x=v \text { in } C[v] \quad \text { if } x \notin b v(C)
$$

Eliminating dead code: (IR2)

$$
\text { let } x=v \text { in } t \quad \longrightarrow \quad t \quad \text { if } x \notin f v(t)
$$

Binding formals to actuals: (IR3)

$$
\left(\lambda x \cdot t_{2}\right) t_{1} \quad \longrightarrow \quad \text { let } x=t_{1} \text { in } t_{2}
$$

These rules are valid under every strategy and in the face of side effects.
Rule IR1 works for every value v, not just λ-abstractions.
Rules IR1 and IR2 work for "let rec", too!
Rule IR1 duplicates v and can cause non-termination at compile-time (!) or an explosion in code size.

Simplification rules

A few additional simplification rules are useful:
Eliminating an alias: (SR1)

$$
\text { let } y=x \text { in } t \quad \longrightarrow \quad t[x / y]
$$

Hoisting a binding: (SR2)

$$
E\left[\text { let } x=t_{1} \text { in } t_{2}\right] \quad \longrightarrow \text { let } x=t_{1} \text { in } E\left[t_{2}\right]
$$

These rules are valid under every strategy and in the face of side effects.

Example

Consider this tiny example:

```
let succ x = x + 1
let even x = x mod 2 = 0
let test x = even (succ x)
```

This could be call-by-value (OCaml) or call-by-need (Haskell).

MPRI 2.4 Optimization

```
let succ \(\mathrm{x}=\mathrm{x}+1\)
let even \(\mathrm{x}=\mathrm{x} \bmod 2=0\)
let test \(\mathrm{x}=\) even (succ x )
Inlining succ and even (IR1, applied twice) yields:
let succ \(x=x+1\)
let even \(x=x \bmod 2=0\)
let test \(\mathrm{x}=(\) fun \(\mathrm{x} \rightarrow \mathrm{x} \bmod 2=0)((f u n \mathrm{x}->\mathrm{x}+1) \mathrm{x})\)
```

MPRI 2.4 Optimization

François Pottier

Example, continued

```
let succ x = x + 1
let even x = x mod 2 = 0
let test x = (fun x -> x mod 2 = 0) ((fun x -> x + 1) x)
```

Eliminating dead code (IR2, applied twice) yields:
let test $\mathrm{x}=($ fun $\mathrm{x}->\mathrm{x} \bmod 2=0)((f u n \mathrm{x}->\mathrm{x}+1) \mathrm{x})$

Binding (IR3) yields:

$$
\text { let test } \mathrm{x}=(\text { fun } \mathrm{x} \rightarrow \mathrm{x} \bmod 2=0)(\text { let } \mathrm{x}=\mathrm{x} \text { in } \mathrm{x}+1)
$$

Example, continued

let test $\mathrm{x}=($ fun $\mathrm{x} \rightarrow \mathrm{x} \bmod 2=0)($ let $\mathrm{x}=\mathrm{x}$ in $\mathrm{x}+1)$
Renaming (SR1) yields:
let test $\mathrm{x}=$
(fun $x \rightarrow x \bmod 2=0)(x+1)$

MPRI 2.4 Optimization
tion

Example, continued

```
let test x =
        (fun x -> x mod 2 = 0) (x + 1)
```

Binding (IR3) yields:
let test $\mathrm{x}=$
let $\mathrm{x}=\mathrm{x}+1$ in
$\mathrm{x} \bmod 2=0$

Example, continued

```
let test x =
    let x = x + 1 in
    x mod 2 = 0
```

Optionally, one more application of IR1 \& IR2 could yield:

```
let test x =
    (x + 1) mod 2 = 0
```

This would not improve the machine code that we get in the end, though.

Case of known constructor

IR3 is the simplification rule that actually saves one step of computation.
It is applicable when a function value is eliminated, that is, called. What if a value of an algebraic data type is eliminated?

Case of known constructor

IR3 is the simplification rule that actually saves one step of computation.
It is applicable when a function value is eliminated, that is, called. What if a value of an algebraic data type is eliminated?

A new rule is needed:
Case of known constructor: (IR4)
case inj $j_{i} v$ of $x_{1} \cdot t_{1} \| x_{2} \cdot t_{2} \longrightarrow \quad$ let $x_{i}=v$ in t_{i}

Example

Suppose Booleans are user-defined:
type bool = False | True

Now, consider this tiny example:
let not $\mathrm{x}=$ match x with False -> True | True -> False
let test $\mathrm{x}=$ not (not x)

Example, continued

```
let not x = match x with False -> True | True -> False
let test x = not (not x)
```

Inlining (IR1, applied twice) and dead code elimination (IR2) yield:

```
let test x =
    (fun x -> match x with False -> True | True -> False)
        ((fun x -> match x with False -> True | True -> False) x)
```

Binding (IR3) and renaming (SR1) yield:

```
let test x =
    (fun x -> match x with False -> True | True -> False)
        (match x with False -> True | True -> False)
```

MPRI 2.4 Optimization François Pottier

Example, continued

```
let test x =
    (fun x -> match x with False -> True | True -> False)
        (match x with False -> True | True -> False)
```

Binding (IR3) yields:

```
let test x =
    let x = match x with False -> True | True -> False in
    match x with False -> True | True -> False
```


Example, continued

```
let test x =
    let x = match x with False -> True | True -> False in
    match x with False -> True | True -> False
```

Now, what? The rule β_{v} is not applicable here.

Example, continued

```
let test x =
    let x = match x with False -> True | True -> False in
    match x with False -> True | True -> False
```

Now, what? The rule β_{v} is not applicable here.
Under call-by-need, this let construct can be reduced:

```
let test x =
    match
        match x with False -> True | True -> False
    with
    False -> True | True -> False
```

We then seem to need a "case-of-case" simplification rule.
What happens under call-by-value, though?

E of case

Under call-by-value, one could argue that the right-hand side is pure and apply full β.
One can do better and directly apply a new rule:

$$
\begin{aligned}
& \text { E of case: }(\text { (SR3 }) \\
& E\left[\text { case } t \text { of } x_{1} \cdot t_{1} \| x_{2} \cdot t_{2}\right]
\end{aligned} \xrightarrow{ } \text { case } t \text { of } x_{1} \cdot E\left[t_{1}\right] \| x_{2} \cdot E\left[t_{2}\right]
$$

This rule is valid under every strategy. I think.
It is known as a commuting conversion.
Case-of-case is a special case of it!
Exercise (recommended): Write the rule "case-of-case". Optimization

Example, continued

```
let test x =
    let x = match x with False -> True | True -> False in
    match x with False -> True | True -> False
By E-of-case (SR3), we obtain:
```

let test $\mathrm{x}=$
match x with
| False -> (
let $\mathrm{x}=$ True in
match x with False -> True | True -> False
)
| True -> (
let $\mathrm{x}=$ False in
match x with False -> True | True -> False
) Optimization

François

Pottier

```
let test x =
    match x with
    | False -> (
        let x = True in
        match x with False -> True | True -> False
        )
    | True -> (
            let x = False in
            match x with False -> True | True -> False
        )
```

Inlining (IR1, IR2) and case-of-known-constructor (IR4) yield:

```
let test x =
    match x with
    | False -> False
    | True -> True
```


Example, continued

```
let test x =
    match x with
    | False -> False
    | True -> True
```

Yet another simplification rule, η-reduction for sums, yields:

```
let test x = x
```


Case of case, improved

This rule duplicates the evaluation context:

$$
\begin{aligned}
\mathrm{E} \text { of case: } & (\mathrm{SR} 3) \\
\left.\mathrm{E} \text { [case } t \text { of } x_{1} \cdot t_{1} \| x_{2} \cdot t_{2}\right] & \text { case } t \text { of } x_{1} \cdot E\left[t_{1}\right] \| x_{2} \cdot E\left[t_{2}\right]
\end{aligned}
$$

This is potentially devastating!
E.g., suppose E is "case [] of $y_{1} \cdot u_{1} \| y_{2} \cdot u_{2}$ ":

Case of case: (SR3c)
case (case t of $x_{1} \cdot t_{1} \| x_{2} \cdot t_{2}$) of $y_{1} \cdot u_{1} \| y_{2} \cdot u_{2}$
case t of x_{1}.(case t_{1} of $\left.y_{1} \cdot u_{1} \| y_{2} \cdot u_{2}\right)$
$\| x_{2} .\left(\right.$ case t_{2} of $\left.y_{1} \cdot u_{1} \| y_{2} \cdot u_{2}\right)$
The branches u_{1} and u_{2} are duplicated! What to do?

Case of case, improved

A solution is to introduce join points to limit duplication.

> Case of case, with join points: case (case t of $\left.x_{1} \cdot t_{1} \| x_{2} \cdot t_{2}\right)$ of $y_{1} \cdot u_{1} \| y_{2} \cdot u_{2}$ let $k_{1}=\lambda y_{1} \cdot u_{1}$ and $k_{2}=\lambda y_{2} \cdot u_{2}$ in case t of $x_{1} \cdot\left(\right.$ case t_{1} of $\left.y_{1} \cdot k_{1} y_{1} \| y_{2} \cdot k_{2} y_{2}\right)$
> $\| x_{2} .\left(\right.$ case t_{2} of $\left.y_{1} \cdot k_{1} y_{1} \| y_{2} \cdot k_{2} y_{2}\right)$

The names k_{1} and k_{2} can be thought of as labels to which one jumps.
We have intentionally allowed the outer case to be duplicated. The two copies scrutinize t_{1} and t_{2}, so further simplifications should be possible.

Example

Suppose the function bor implements Boolean disjunction. Consider this:

```
match bor b1 b2 with
| False -> <foo>
| True -> <bar>
```

Inlining yields:

```
match
    match b1 with False -> b2 | True -> True
with
| False -> <foo>
| True -> <bar>
``` Optimization
```

match
match b1 with False -> b2 | True -> True
with
| False -> <foo>
| True -> <bar>

```

Applying rule SR3cj yields:
```

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> (match True with False -> foo() | True -> bar())

``` Optimization François Pottier
```

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> (match True with False -> foo() | True -> bar())

```

By case-of-known-constructor (IR4), we obtain:
```

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> bar()

```

\section*{Example, continued}

Equational reasoning
```

let foo () = <foo>
and bar () = <bar> in
match b1 with
| False -> (match b2 with False -> foo() | True -> bar())
| True -> bar()

```

Because there is only one jump to foo, it can be inlined:
```

let bar () = <bar> in
match b1 with
| False -> (match b2 with False -> <foo> | True -> bar())
| True -> bar()

```

\section*{Example, continued}
bar is a "join point", a local function that is meant to represent a code label. It is always called via a tail call.

The idea is, it should not require a closure allocation.
```

let bar () = <bar> in
match b1 with
| False -> (match b2 with False -> <foo> | True -> bar())
| True -> bar()

```

It must not be naïvely inlined: that would cause duplication again!
During further transformations, one should ensure that it remains a "join point" and is not inadvertently turned into a full-fledged first-class function.

Maurer, Ariola, Downen, Peyton Jones,
Compiling without continuations, 2017.

\section*{Redundant case elimination}

Can we optimize this code?
```

match xs with
| [] -> []
| y :: ys ->
match xs with
| [] -> <foo>
| z :: zs -> <bar>

```

The rules shown so far can simplify this only if there is a binding of the form let \(\mathrm{xs}=\) <value> higher up. This is case-of-known-constructor.

\section*{Redundant case elimination}

Can we optimize this code?
```

match xs with
| [] -> []
| y :: ys ->
match xs with
| [] -> <foo>
| z :: zs -> <bar>

```

The rules shown so far can simplify this only if there is a binding of the form let \(\mathrm{xs}=\) <value> higher up. This is case-of-known-constructor.

We could insert let \(\mathrm{xs}=\mathrm{y}:\) : \(\quad\) ys at line 4 , but that would be potentially pessimizing.

Better keep track of which equations are known at each program point, and improve case-of-known-constructor to exploit these equations.

See Peyton Jones and Marlow, §6.3.

\section*{Inlining recursive functions}

Pottier

The rule IR1, as stated, does not allow inlining a function into itself. This could be relaxed.

Inlining a recursive function into itself amounts to loop unrolling.
Inlining a recursive function at its call site amounts to loop peeling.

An old idea. Particularly important in very high-level languages. It eliminates the function call overheard, and enables other optimizations.
The danger of inlining is an increase in code size and potential non-termination at compile time. This must be controlled via heuristics or via user annotations (partial evaluation; staging).
Aggressive inliners can be guided by program analyses.

> Peyton Jones, Santos, A transformation-based optimiser for Haskell, 1997.
> Peyton Jones, Marlow, Secrets of the Glasgow Haskell Compiler inliner, 2002.
> Jagannathan and Wright, Flow-directed inlining, 1996.

MPRI 2.4

\section*{Optimization}

\section*{François}

Pottier
(1) Equational reasoning
2. Inlining and simplification

\section*{(3) Call-pattern specialization}

A direct
ach
Shortcut
deforestation
Stream fusion

\section*{Conclusion}

\section*{Example}

Pottier

Equational reasoning

Inlining
Call-pattern specialization

Here is a reasonably elegant way of obtaining the last element of a list:
```

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

```

Unfortunately, it is inefficient...

\section*{Example}

Here is a reasonably elegant way of obtaining the last element of a list:
```

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

```

Unfortunately, it is inefficient...
- The cell \(x 1\) :: xs is re-allocated; CSE can recognize and avoid this.
- Two list cells are inspected to find that the third branch must be taken.

Every cell is tested twice! We forget information through the recursive call. How would you remedy this (by hand)?

\section*{Example, hand-optimized}

By hand, one might write this optimized code:
```

let rec last xs =
match xs with
| [] -> assert false
| x :: xs -> last_cons x xs
and last_cons x xs =
match xs with
| [] -> x
| x :: xs -> last_cons x xs

```
last_cons is a loop with two registers x and xs .
Keeping track of x does the trick. Each list cell is examined once.

\section*{Call-pattern specialization}

Could a compiler do this automatically?
Inlining last into itself would amount to loop unrolling (i.e., doing two iterations at a time) but would not eliminate the problem entirely.

The problem lies in the call last (\(\mathrm{x}:: \mathrm{xs}\)), where information is lost.
We must specialize last for this call pattern.

\section*{Example, optimized}

The first step is to create a specialized function, last_cons.
```

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)
and last_cons x xs =
last (x :: xs)

```

The equation last (\(\mathrm{x}: \mathrm{xs}\)) = last_cons x xs holds (obviously).
We record (remember) this equation for later use.

MPRI 2.4 Optimization

\section*{Example, optimized}

The second step is to inline last into last_cons.
```

let rec last xs =
match xs with
| [] -> assert false
[x] -> x
| _ :: x :: xs -> last (x :: xs)
and last_cons x xs =
let xs = x :: xs in
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)

```

\section*{Example, optimized}

Equational reasoning

Inlining

By inlining xs and exploiting case-of-known-constructor, we get:
```

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)
and last_cons x xs =
match xs with
| [] -> x
| x :: xs >> last (x :: xs)

```

What should be the last step?

\section*{Example, optimized}

The last step is to replace last (\(\mathrm{x}: \mathrm{x}\)) with last_cons x xs.
There are two occurrences, one of which lies within last_cons itself.
We get the code that we would have written, with one iteration unrolled:
```

let rec last xs =
match xs with
| [] -> assert false
[x] -> x
| _ :: x :: xs -> last_cons x xs
and last_cons x xs =
match xs with
| [] -> x
| x :: xs -> last_cons x xs

```

This exploits an equation that was recorded earlier.

\section*{Danger!}

The correctness of exploiting an equation within itself is nonobvious.
Recall this situation:
```

let rec last xs =
match xs with
| [] -> assert false
| [x] -> x
| _ :: x :: xs -> last (x :: xs)
and last_cons x xs =
last (x :: xs)

```

The equation last (\(\mathrm{x}: \mathrm{xs}\)) = last_cons x xs holds (obviously).
There are two places where it can be used right now... What if we did so?

\section*{Danger!}

We get a non-terminating version of the loop:
```

```
let rec last xs =
```

```
let rec last xs =
 match xs with
```

    match xs with
    ```
```

    | [] -> assert false
    ```
 | [] -> assert false
 | [x] -> x
 | [x] -> x
 | _ :: x :: xs -> last_cons x xs
 | _ :: x :: xs -> last_cons x xs
and last_cons x xs =
and last_cons x xs =
 last_cons x xs
```

    last_cons x xs
    ```

This "obviously correct" transformation is actually incorrect.
We have in fact rolled the loop so it jumps to itself after 0 iterations!
Exploiting \(x=v\) within itself leads to \(x=x\), which is nonsensical.

\section*{Summary}

Pottier

Call-pattern specialization is also known as constructor specialization. It is simple, but runs a risk of generating uninteresting specializations and a risk of nontermination at compile-time. Heuristics are needed.

Peyton Jones, Call-pattern specialisation for Haskell programs, 2007.
(1) Equational reasoning
2. Inlining and simplification
(3) Call-pattern specialization
(4) Deforestation

A direct approach
Shortcut deforestation
Stream fusion
(5) Conclusion

\section*{Deforestation}

Programs expressed in a high-level style often build intermediate data structures (lists, trees, ...) which are immediately used and discarded.

They typically allow communication between a producer and a consumer.
Deforestation (Wadler, 1990) aims to get rid of them.

MPRI 2.4

\section*{Optimization}

\section*{François}

Pottier
(1) Equational reasoning
2. Inlining and simplification
(3) Call-pattern specialization
approach Shortcut deforestation Stream fusion

\author{
Conclusion
}

Equational reasoning

Inlining
Call-pattern specialization

\section*{Deforestation}

A direct
approach

\section*{Example}

The composition of filter and map allocates an intermediate list. As a direct attempt at deforestation, let us try and optimize it.
```

let bar pf xs =
List.filter p (List.map f xs)

```

Let us specialize for the call pattern List.filter p (List.map \(f\) xs)... I am using an expression as a call pattern - this goes beyond GHC.

\section*{Example}

Equational reasoning

Inlining

After creating a specialized copy and inlining List.filter and List.map into it, we get:
```

let filter_map p f xs =
match
match xs with
| [] -> []
| x :: xs -> f x : : List.map f xs
with
| [] -> []
| x :: xs ->
if p x then x :: List.filter p xs
else List.filter p xs
let bar p f xs =
filter_map p f xs

```

\section*{Example}

Performing case-case conversion yields:
```

let filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->
let x :: xs = f x :: List.map f xs in
if p x then x :: List.filter p xs
else List.filter p xs

```

\section*{Example}

Deciding that e1 :: e2 is evaluated from left-to-right, we get:
```

let filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->
let x = f x in
let xs = List.map f xs in
if p x then x :: List.filter p xs
else List.filter p xs

```

Evaluation order is left undecided by OCaml.

\section*{Example}

We wisely choose to inline xs, as it is used only once (in each branch):
```

let filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->
let x = f x in
if p x then x :: List.filter p (List.map f xs)
else List.filter p (List.map f xs)

```

This is full \(\beta\) !
It is valid under call-by-need. (Assuming no side effects but divergence.) It is invalid under call-by-value (with side effects), unless \(f\) is pure.
- f must not read or write mutable data, and must terminate.

The OCaml compiler won't do this!

\section*{Example}

We now recognize the call pattern List.filter \(p\) (List.map \(f\) xs).
```

let rec filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->
let x = f x in
if p x then x :: filter_map p f xs
else filter_map p f xs

```

We get the code that an OCaml programmer would write by hand.
No intermediate list! Successful deforestation.

\section*{Summary}

The equation List.filter \(p\) (List.map \(f\) xs) = filter_map p \(f\) xs
- holds under call-by-need;
- holds under call-by-value (with side effects) if \(f\) is pure.

Pure languages offer greater potential for aggressive optimization!

MPRI 2.4

Pottier
(1) Equational reasoning
2. Inlining and simplification
(3) Call-pattern specialization
(4) Deforestation

A direct approach
Shortcut deforestation
Stream fusion
(5) Conclusion

\section*{Idea 1: focus on lists}

Focus on lists, a universal type for exchanging sequences of elements.
Some functions are list producers; some are list consumers.
Some, such as filter and map, are both. (Not a problem.)
Some, such as zip and unzip have two inputs or two outputs.
Composing these functions yields producer-consumer pipelines.

\section*{Idea 2: use a custom internal data format}

Producers and consumers use lists as an exchange format.
They can work internally using a different data representation.
They are then be wrapped in conversions to and from lists.
When a producer and consumer are composed,
- two conversions, to and from lists, should cancel out,
- so there remains to optimize a composition at the internal data type.

This is an instance of the worker/wrapper transformation.
Gill and Hutton, The worker/wrapper transformation, 2009.

\section*{Idea 3: avoid recursion}

The internal data format should have a nonrecursive type, so that:
- Most producers and consumers are not recursive!
- At least one of the conversions, to and from lists, must be recursive.

Two approaches, based on two internal data formats, have been proposed:
- shortcut deforestation, based on folds;
- stream fusion, based on streams.

Gill, Launchbury, Peyton Jones, A short cut to deforestation, 1993.

Coutts, Leshchinskiy, Stewart, Stream fusion: from lists to streams to nothing at all, 2007.

\section*{The internal data format}

In shortcut deforestation, a sequence is internally represented as a fold. A fold is a function that allows traversing the sequence.
```

type 'a fold =
{ fold: 'b. ('a -> 'b -> 'b) -> 'b -> 'b }

```

It is a producer which pushes elements towards a consumer.
This is the standard Church encoding of lists.
Gill et al.'s paper does not explicitly use the above polymorphic type. I follow them.

\section*{Converting a list to a fold}

This is OCaml's List.fold_right, with the last two parameters swapped:
```

let rec foldr c n xs =
match xs with
| [] -> n
| x :: xs -> c x (foldr c n xs)

```

If xs is a list then fun \(\mathrm{c} n \rightarrow\) foldr c n xs is the corresponding fold.
We could define:
```

let import (xs : 'a list) : 'a fold =
{ fold = fun c n -> foldr c n xs }

```

\section*{Converting a fold to a list}

To convert a fold to a list, we apply it to "cons" and "nil":
```

let build g =
g (fun x xs -> x :: xs) []

```

We could define:
let export (\{ fold \} : 'a fold) : 'a list = build fold

\section*{Isomorphism}

The idea is that we have an isomorphism between lists and (certain well-behaved) folds.

The following law holds:
- export (import xs) is observationally equivalent to xs.

The reverse law holds if \(f\) is pure and terminating:
- import (export f) is equivalent to \(f\).

Naturally, the law that's needed when composing two components is...

\section*{Isomorphism}

The idea is that we have an isomorphism between lists and (certain well-behaved) folds.

The following law holds:
- export (import xs) is observationally equivalent to xs.

The reverse law holds if \(f\) is pure and terminating:
- import (export \(f\)) is equivalent to \(f\).

Naturally, the law that's needed when composing two components is...
...the second one.
Let's just pretend that it holds unconditionally.
Challenge: formalize build/foldr in Coq and establish the isomorphism.

\section*{Isomorphism}

Equational reasoning

Inlining

In Gill et al.'s paper, the second law is known as "the foldr/build rule":
\[
\text { foldr } c \mathrm{n} \text { (build g) }=g \mathrm{c} n
\]

\section*{An example consumer-and-producer}

In the list library, map is written as follows:
```

let map f xs =
build (fun c n ->
foldr (fun x xs -> c (f x) xs) n xs
)

```

The list \(x s\) is imported using foldr, yielding a fold.
A new fold is then constructed on top of it.
This new fold is converted back to a list using build.

Similarly, filter is written as follows:
```

let filter p xs =
build (fun c n ->
foldr (fun x xs -> if p x then c x xs else xs) n xs
)

```

What happens when we compose filter and map?
```

let bar p f xs =
filter p (map f xs)

```

\section*{Back to (filter; map)}

Inlining filter and map yields:
```

let bar p f xs =
build (fun c n ->
foldr
(fun x xs -> if p x then c x xs else xs)
n
(build (fun c n ->
foldr (fun x xs -> c (f x) xs) n xs
))
)

```

We recognize foldr _ _ (build _).

\section*{Back to (filter; map)}

Exploiting the equation foldr c n (build g) \(=\mathrm{g} \mathrm{c} \mathrm{n}\) yields:
```

let bar p f xs =
build (fun c n ->
let c x xs = if p x then c x xs else xs in
foldr (fun x xs -> c (f x) xs) n xs
)

```

This is where we save an intermediate list.

\section*{Back to (filter; map)}

Inlining c yields:
```

let bar p f xs =
build (fun c n ->
foldr (fun x xs ->
let x = f x in
if p x then c x xs else xs
) n xs
)

```

This is where filter and map come into contact and combine.

\section*{Back to (filter; map)}

We are essentially finished, but can work a little more. Inlining build yields:
```

let bar p f xs =
foldr (fun x xs ->
let x = f x in
if p x then x :: xs else xs
) [] xs

```

\section*{Back to (filter; map)}

Call-pattern specialization for foldr yields:
```

let rec filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->
let xs = filter_map p f xs in
let x = f x in
if p x then x :: xs else xs

```
let bar \(p \mathrm{f} x \mathrm{~s}=\)
 filter_map p f xs

Assuming the language is pure, or assuming \(p\) and \(f\) are pure, we can inline xs...

\section*{Back to (filter; map)}

Inlining xs yields:
```

let rec filter_map p f xs =
match xs with
| [] -> []
| x :: xs ->
let x = f x in
if p x then x :: filter_map p f xs
else filter_map p f xs

```

We again get the code that an OCaml programmer would write by hand.

\title{
(1) Equational reasoning
}
(2) Inlining and simplification
(3) Call-pattern specialization
(4) Deforestation

A direct approach
Shortcut deforestation

\section*{Stream fusion}
(5) Conclusion

\section*{The internal data format}

In stream fusion, a sequence is internally represented as a stream. A stream is a function that allows querying the sequence.
```

type 'a stream =
| S:
(* If you have a pair of a producer function... *)
('s -> ('a, 's) step)
(* ...and an initial state, *)
* 's ->
(* then you have a stream. *)
'a stream

```

It is a producer from which a consumer can pull elements.
A typical object-oriented idiom, analogous to Java iterators, but not inherently mutable.

This is an existential type, very much like the type of closures in week 3.

\section*{The internal data format}

Querying a stream produces a result of the following form:
```

type ('a, 's) step =
| Done (* finished *)
| Yield of 'a * 's (* an element and a new state *)
| Skip of 's (* just a new state - please ask again *)

```

The types stream and step are nonrecursive.
This, and the existence of Skip, allows most stream producers to be nonrecursive functions.

A consumer must ask, ask, ask until a non-Skip result is produced.

\section*{Converting a list to a stream}

This conversion function is nonrecursive:
```

let stream (xs : 'a list) : 'a stream =
let next xs =
match xs with
| [] -> Done
| x :: xs -> Yield (x, xs)
in
S (next, xs)

```

Exercise: Here, what is the type 's of states?

\section*{Converting a list to a stream}

The local function next is in fact closed, so one can also write:
```

let stream_next xs =
match xs with
| [] -> Done
| x :: xs -> Yield (x, xs)
let stream (xs : 'a list) : 'a stream =
S (stream_next, xs)

```

\section*{Converting a stream to a list}

This is a recursive consumer function:
```

let unstream (S (next, s) : 'a stream) : 'a list =
let rec unfold s =
match next s with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s
in
unfold s

```

\section*{Isomorphism}

There is an isomorphism between lists and (certain) streams.
The following law holds:
- unstream (stream xs) is observationally equivalent to \(x s\).

The reverse law holds if str is pure and terminating:
- stream (unstream str) is equivalent to str.

Again, we need the second law, known as "stream/unstream".
Let's pretend that it holds unconditionally.

How would you implement a singleton stream?

\section*{Examples of stream producers}

How would you implement a singleton stream?
```

let return (x : 'a) : 'a stream =
let next s =
if s then Yield (x, false) else Done
in
S (next, true)

```

The type of \(s\) is bool: either we have already yielded an element, or we have not.

Each stream producer freely chooses its type of internal states.
Exercise: Write interval of type int -> int -> int stream.
Exercise: Write append of type 'a stream -> 'a stream -> 'a stream.

\section*{An example consumer-and-producer}

Here is map on streams, known as S.map in the following:
```

let map (f : 'a -> 'b) (S(next, s) : 'a stream) : 'b stream =
let next s =
match next s with
| Done -> Done
| Yield (x, s) -> Yield (f x, s)
| Skip s -> Skip s
in
S (next, s)

```

Again, not a recursive function!

\section*{An example consumer-and-producer}

Composing with conversions to and from streams yields map on lists:
```

let map (f : 'a -> 'b) (xs : 'a list) : 'b list =
unstream (S.map f (stream xs))

```

\section*{An example consumer-and-producer}

Here is filter on streams, known as S.filter in the following:
```

let filter (p : 'a -> bool) (S (next, s) : 'a stream) =
let next s =
match next s with
| Done -> Done
| Yield (x, s) -> if p x then Yield (x, s) else Skip s
| Skip s -> Skip s
in
S (next, s)

```

Again, not a recursive function!

\section*{An example consumer-and-producer}

Composing with conversions to and from streams yields filter on lists:
```

let filter (p : 'a -> bool) (xs : 'a list) : 'a list =
unstream (S.filter p (stream xs))

```

MPRI 2.4

\section*{Back to (filter; map)}

What happens when we compose filter and map?
```

let bar p f xs =
L.filter p (L.map f xs)

```

\title{
Back to (filter; map)
}

Pottier

Inline filter and map:
```

let bar p f xs =
unstream (S.filter p (stream
unstream (S.map f (stream xs))
)))

```

\title{
Back to (filter; map)
}

Pottier

Use the stream/unstream rule:
```

    let bar p f xs =
        unstream (S.filter p (S.map f (stream xs)))
    S.filter and S.map come in contact.
Let's inline the hell out of this code!

```

MPRI 2.4

Pottier

Equational reasoning

Inlining
Call-pattern specialization approach

\section*{Back to (filter; map)}

Inline stream:
```

let bar p f xs =
unstream (S.filter p (S.map f (S (stream_next, xs))))

```

Inline S.map:
```

let bar p f xs =
let next s =
match stream_next s with
| Done -> Done
| Yield (x, s) -> Yield (f x, s)
| Skip s -> Skip s
in
unstream (S.filter p (S (next, xs)))

```

\section*{Back to (filter; map)}

Inline stream_next:
```

let bar p f xs =
let next s =
match
match s with
| [] -> Done
| x :: s -> Yield (x, s)
with
| Done -> Done
| Yield (x, s) -> Yield (f x, s)
| Skip s -> Skip s
in
unstream (S.filter p (S (next, xs)))

```

\section*{Back to (filter; map)}

Perform case-of-case conversion, followed with case-of-constructor:
```

let bar p f xs =
let next s =
match s with
| [] -> Done
x :: s -> Yield (f x, s)
in
unstream (S.filter p (S (next, xs)))

```

MPRI 2.4 Optimization

François
Pottier

Inline S.filter:
```

let bar p f xs =
let next s =
match s with
| [] -> Done
x :: s -> Yield (f x, s)
in
let next s =
match next s with
| Done -> Done
| Yield (x, s) -> if p x then Yield (x, s) else Skip s
| Skip s -> Skip s
in
unstream (S (next, xs))

```

\section*{Back to (filter; map)}

Inline the first next function into the second one:
let bar pfxs =
 let next \(\mathrm{s}=\)
 match
 match s with
 | [] -> Done
 | x : : s -> Yield (f \(\mathrm{x}, \mathrm{s}\))
 with
 | Done \(\quad->\) Done
 | Yield (x, s) \(->\) if \(p\) x then Yield (x, s) else Skip s
 | Skip s \(\quad\) Sk Skip s
 in
 unstream (S (next, xs))

\section*{Back to (filter; map)}

Apply case-of-case and case-of-constructor again:
```

let bar p f xs =
let next s =
match s with
| [] -> Done
| x :: s ->
let y = f x in if p y then Yield (y, s) else Skip s
in
unstream (S (next, xs))

```

MPRI 2.4 Optimization

François
Pottier

\section*{Back to (filter; map)}

Inline unstream:
```

let bar p f xs =
let next s =
match s with
| [] -> Done
let y = f x in if p y then Yield (y, s) else Skip s
in
let rec unfold s =
match next s with
| Done -> []
| Yield (x, s) -> x :: unfold s
| Skip s -> unfold s
in
unfold xs

```

\section*{Back to (filter; map)}

Inline next into unstream:
```

let bar p f xs =

```
 let rec unfold \(s=\)
 match
 match s with
 | [] \(\rightarrow\) Done
 x : : S ->
 let \(y=f x\) in if \(p\) y then Yield (\(y, s\)) else Skip \(s\)
 with
 | Done \(->\) []
 | Yield (x, s) \(->\) x : : unfold s
 | Skip s \(\quad->\) unfold s
 in
 unfold xs

\section*{Back to (filter; map)}

Apply case-of-case again, then a couple rules, then case-of-constructor:
```

let bar p f xs =
let rec unfold s =
match s with
| [] -> []
| x :: s ->
let y = f x in
if p y then y :: unfold s else unfold s
in
unfold xs

```

Exercise: Clarify which rewriting rules are used here.

\section*{Back to (filter; map)}
(Optional.) Hoist unfold out. (This is \(\lambda\)-lifting.)
```

let rec unfold p f s =
match s with
| [] -> []
| x :: s ->
let y = f x in
if p y then y :: unfold p f s
else unfold p f s
let bar p f xs =
unfold p f xs

```

We get the code that an OCaml programmer would write by hand.
No intermediate data structure! Successful deforestation again.

\section*{What's the point?}

Pottier

Why is stream fusion preferable to shortcut deforestation?
Shortcut deforestation cannot express foldl in a nice way.
Exercise: Implement foldl on streams, then on lists.
Exercise: Find out how foldl (+) 0 (append xs ys) is optimized. You should reach a sequence of two loops - no memory allocation.

\section*{The way of the future?}

Do not let the compiler's heuristics decide which reductions and simplifications should take place at compile time.

Instead, give explicit staging annotations to distinguish pipeline-construction-time computation and pipeline-runtime computation!

Relying on a general-purpose compiler for library optimization is slippery. [...] A compiler offers no guarantee that optimization will be successfully applied. [...] An innocuous change to a program [can] make it much slower.

Kiselyov, Biboudis, Palladinos, Smaragdakis, Stream fusion, to completeness, 2017.

François
Pottier
(1) Equational reasoning
(2) Inlining and simplification
(3) Call-pattern specialization
4) Deforestation

A direct approach

\section*{Shortcut deforestation}

Stream fusion
(5) Conclusion

\section*{Program derivation}

Equational reasoning can be used not just by compilers, but also by programmers, by hand.

Starting from a simple, inefficient program, derive efficient code via a series of rewriting steps.

See my blog post on a derivation of Knuth-Morris-Pratt.
Supercompilation can do this, too!
Secher and Sørensen, On Perfect Supercompilation, 1999.

\section*{A few things to remember}

Pottier
- Equational reasoning can be a powerful means of transforming or deriving programs.
- \(\lambda\)-calculus-based (intermediate) languages allow expressing a wide range of program transformations and optimizations.
- Side effects (non-termination, mutable state...) complicate matters.```

