
Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

1/1

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

2017-12-08

yrg@irif.fr
yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

2/1

What have you learnt for now?

Well typed programs never go wrong!

A precise account on key concepts behind this slogan

▶ Typed functional programming
▶ Operational semantics
▶ Type soundness

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

2/1

What have you learnt for now?

Well typed programs never go wrong!

A precise account on key concepts behind this slogan

▶ Typed functional programming
▶ Operational semantics
▶ Type soundness

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

2/1

What have you learnt for now?

Well typed programs never go wrong!

A precise account on key concepts behind this slogan

▶ Typed functional programming
▶ Operational semantics
▶ Type soundness

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

3/1

The slogan is a bit strong, isn’t it?

1 List.map2 (/) l1 l2

Type safety, more precisely
Type safety is a deal between the type system and the runtime:
to be safe, the well-formedness of each termmust be checked.
There are implicit assumptions about which of these checks are
the responsability of the typechecker and which part is the
responsability of the runtime system.
Of course, we prefer static checks: they improve both the robustness
and the performance of our programs! But how far can we go? Can
we totally remove the aforementionned implicit assumptions?

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

4/1

Richer types, richer guarantees

1 List.map2 (/) l1 l2

Is there a type for that (guarantee)?

▶ l1 and l2 the same length.
▶ l2 only contains strictly positive integers.
▶ This is a terminating computation.
▶ List.map2 enjoys a linear complexity.
▶ map2 is productive 1.
▶ This is a pure computation.
▶ …

1Even if l1 and l2 are infinite, any finite prefix of the result can be observed.

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

5/1

Richer types, complex trade-offs

1 (* f : 'a list -> 'b list -> ('a * 'b) list *)
2 let f l1 l2 = List.map2 mkPair l1 l2

Type systems designers are like rock balancing artists

Principality
Efficient type checking

Usefulness
Decidability
Soundness
Expressivity

and, according to them, ML sits at a sweet spot in the design space.

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

6/1

Expressivity vs Tractability

As a programming tool, a type systemmust not only be expressive
and sound but it must also fulfill some (maybe more informal)
practical properties: typechecking must be efficient, types must be
palatable, type inference should be predictable, types should be
erasable, etc.

Motto

Make type systems as rich as possible
while keeping an eye on their implementation.

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

7/1

Something to chew on

More technically, we focus on type systems equipped with rules like:

Γ ⊢ t : T1 Γ ⊢ T1 R T2

Γ ⊢ t : T2

whereR is typically someequivalence or partial order over types.

yrg@irif.fr

Rich types,
Tractable typing
– Overview –

Yann Régis-Gianas
yrg@irif.fr

8/1

This part of the course

▶ Act 1: ML and type inference.
▶ Act 2: Subtyping.
▶ Act 3: Modules.
▶ Act 4: Infinite computations.
▶ Act 5: Effects and resources.
▶ Act 6: Dependently-typed systems for programming.
▶ Act 7: Functional correctness.

yrg@irif.fr

