Efficient

 execution mechanismsA naive interpreter Natural semantics Environments and closures interpreter

MPRI 2.4

From operational semantics to (verified) interpreter

François Pottier

2017

MPRI 2.4
(1) Efficient execution mechanisms

A naïve interpreter
Natural semantics
Environments and closures
An efficient interpreter
(2) Scaling up the language

MPRI 2.4

Efficient

execution mechanisms
A naïve interpreter
Natural semantics Environments and closures
(1) Efficient execution mechanisms

A naïve interpreter
Natural semantics
Environments and closures
An efficient interpreter
(2) Scaling up the language

A naïve interpreter

An interpreter executes a program (represented by its AST).
Let us write one, in OCaml, by paraphrasing the small-step semantics.

Abstract syntax

Efficient

This is the abstract syntax of the λ-calculus:

```
type var = int (* a de Bruijn index *)
type term =
    | Var of var
    | Lam of (* bind: *) term
    | App of term * term
```

For example, the term $\lambda x \cdot x$ is represented as follows:

```
let id =
    Lam (Var 0)
```


Renaming

lift_ i k represents the renaming $\Uparrow^{i}(+k)$.

```
let rec lift_ i k (t : term) : term =
    match t with
    | Var x ->
        if x < i then t else Var (x + k)
```

 | Lam t ->
 Lam (lift_ (i + 1) k t)
 | App (t1, t2) ->
 App (lift_ i k t1, lift_ i k t2)
 let lift k t =
lift_ 0 k t

Thus, lift k represents $+k$. (This renaming adds k to every variable.) It is used when one moves the term t down into k binders. (Next slide.)

Substitution

subst_ i sigma represents the substitution $\Uparrow^{i} \sigma$.

```
let rec subst_ i (sigma : var -> term) (t : term) : term =
    match t with
    | Var x ->
            if x < i then t else lift i (sigma (x - i))
    | Lam t ->
            Lam (subst_ (i + 1) sigma t)
    | App (t1, t2) ->
            App (subst_ i sigma t1, subst_ i sigma t2)
let subst sigma t =
    subst_ 0 sigma t
```

Thus, subst sigma represents σ. Pottier

A substitution is encoded as a total function of variables to terms.

```
let singleton (u : term) : var -> term =
    function 0 -> u | x -> Var (x - 1)
let singleton (u : term) : var -> term = function \(0->u \mid x \rightarrow \operatorname{Var}(x-1)\)
```

singleton u represents the substitution $u \cdot i d$.

Substitution

MPRI 2.4 Semantics

Recognizing values

It is easy to test whether a term is a value:

```
let is_value = function
    | Var
    | Lam _ ->
        true
    | App _ ->
        false
```


Performing one step of reduction

A direct transcription of Plotkin's definition of call-by-value reduction:

```
let rec step (t : term) : term option =
    match t with
    | Lam _ | Var _ -> None
    (* Plotkin's BetaV *)
    | App (Lam t, v) when is_value v ->
            Some (subst (singleton v) t)
    (* Plotkin's AppL *)
    | App (t, u) when not (is_value t) ->
            in_context (fun t' -> App (t', u)) (step t)
    (* Plotkin's AppVR *)
    | App (v, u) when is_value v ->
            in_context (fun u' -> App (v, u')) (step u)
    (* All cases covered already, but OCaml cannot see it. *)
    | App (_, _) ->
            assert false
```

We have guarded AppL so that AppL and AppVR are mutually exclusive.

MPRI 2.4 Semantics

Pottier

Performing one step of reduction

in_context is just the map combinator of the type _ option.
let in_context fox = match ox with
| None -> None
| Some x -> Some (f x)

Performing many steps of reduction

To evaluate a term, one performs as many reduction steps as possible:

```
let rec eval (t : term) : term =
    match step t with
    | None ->
            t
    | Some t' ->
        eval t'
```

The function call eval t either diverges or returns an irreducible term, which must be either a value or stuck.

Sources of inefficiency

Unfortunately, this is a terribly inefficient way of interpreting programs.
At each reduction step, one must:

- Find the next redex, that is, decompose the term t as $E[\lambda(x . u) v]$. Time: $O(\operatorname{depth}(E))$, that is, $O($ height $(t))$.
- Perform the substitution $u[v / x]$. Time: $O(\operatorname{size}(u) \times \operatorname{size}(v))$.
- Construct the term $E[u[v / x]]$. Time: $O(\operatorname{depth}(E))$, that is, $O($ height $(t))$.

Thus, one reduction step requires much more than constant time!
There seem to be two main sources of inefficiency:

- We keep forgetting the current evaluation context, only to discover it again at the next reduction step.
- We perform costly substitutions.

Efficient

 execution mechanisms A naive interpreter
Natural

 semantics Environments and closures(1) Efficient execution mechanisms

A naïve interpreter
Natural semantics
Environments and closures
An efficient interpreter
(2) Scaling up the language

Towards an alternative to small steps

A reduction sequence from an application $t_{1} t_{2}$ to a final value v always has the form:

$$
t_{1} t_{2} \longrightarrow_{\mathrm{cbv}}^{\star}\left(\lambda x \cdot u_{1}\right) t_{2} \longrightarrow_{\mathrm{cbv}}^{\star}\left(\lambda x \cdot u_{1}\right) v_{2} \longrightarrow_{\mathrm{cbv}} u_{1}\left[v_{2} / x\right] \longrightarrow_{\mathrm{cbv}}^{\star} v
$$

where $t_{1} \longrightarrow_{\mathrm{cbv}}^{\star} \lambda x . u_{1}$ and $t_{2} \longrightarrow_{\mathrm{cbv}}^{\star} v_{2}$. That is,
Evaluate operator; evaluate operand; call; continue execution.

Idea: define a "big-step" relation $t \downarrow_{\text {cbv }} v$, which relates a term directly with the final outcome v of its evaluation, and whose definition reflects the above structure.

Natural semantics, a.k.a. big-step semantics

The relation $t \downarrow_{\text {cbv }} v$ means that evaluating t terminates and produces v. Here is its definition, for call-by-value:

Exercise: define $\downarrow_{\text {cbn }}$.

Example

Let us write \downarrow for $\downarrow_{\text {cbv }}$, and " $v \downarrow$." for " $v \downarrow v$ ".

	$\lambda x . x \downarrow$			
	$1 \downarrow$			
	$1 \downarrow$			$\lambda x \cdot x \downarrow$.
$\lambda x . \lambda y . y x \downarrow$.	$\overline{(\lambda x . x) 1 \downarrow 1}$	$\lambda y . y 1 \downarrow$		$\begin{aligned} & 1 \downarrow . \\ & 1 \downarrow . \end{aligned}$
($\lambda x . \lambda y$	$)((\lambda x . x) 1) \downarrow$. 11	$\lambda x . x \downarrow$	$\overline{(\lambda x . x) 1 \downarrow 1}$
	$(\lambda x . \lambda y . y x)$	($1 x . x$ 1)) $\downarrow 1$	

Whereas a proof of $t \longrightarrow_{\mathrm{cbv}} t^{\prime}$ has linear structure, a proof of $t \downarrow_{\text {cbv }} v$ has tree structure.

Some history

Martin-Löf uses big-step semantics, in English:

> To execute $c(a)$, first execute c. If you get $(\lambda x) b$ as result, then continue by executing $b(a / x)$. Thus $c(a)$ has value d if c has value $(\lambda x) b$ and $b(a / x)$ has value d.

He proposes type theory (1975) as a very high-level programming language in which both programs and specifications can be written.

Which is what we are doing today, in this lecture!

Per Martin-Löf, Constructive Mathematics and Computer Programming, 1984.

Some history

Kahn promotes big-step operational semantics:

Figure 2. The dynamic semantics of mini-ML
He gives a big-step operational semantics of MiniML, a static type system, and a compilation scheme towards the CAM.

Gilles Kahn, Natural semantics, 1987.

A big-step interpreter

The call eval t attempts to compute a value v such that $t \downarrow_{\text {cbv }} v$ holds.

```
exception RuntimeError
let rec eval (t : term) : term =
    match t with
    | Lam _ | Var _ -> t
    | App (t1, t2) ->
            let v1 = eval t1 in
            let v2 = eval t2 in
            match v1 with
            | Lam u1 -> eval (subst (singleton v2) u1)
            | _ -> raise RuntimeError
```

If eval terminates normally, then it obviously returns a value; but it can also fail to terminate or terminate with a runtime error. (Why?)
This interpreter does not forget and rediscover the evaluation context. The context is now implicit in the interpreter's stack!

We could prove this interpreter correct, but will first optimize it further.

Equivalence between small-step and big-step semantics

Lemma (From big-step to small-step)
If $t \downarrow_{\text {cbv }} v$, then $t \longrightarrow_{c b v}^{\star} v$.
Proof.
By induction on the derivation of $t \downarrow_{\text {cbv }} v$.
Case BigCbvValue. We have $t=v$. The result is immediate.
Case BigCbvApp. t is $t_{1} t_{2}$, and we have three subderivations:

$$
t_{1} \downarrow_{\mathrm{cbv}} \lambda x . u_{1} \quad t_{2} \downarrow_{\mathrm{cbv}} v_{2} \quad u_{1}\left[v_{2} / x\right] \downarrow_{\mathrm{cbv}} v
$$

Applying the ind. hyp. to them yields three reduction sequences:

$$
t_{1} \longrightarrow_{\mathrm{cbv}}^{\star} \lambda x . u_{1} \quad t_{2} \longrightarrow_{\mathrm{cbv}}^{\star} v_{2} \quad u_{1}\left[v_{2} / x\right] \longrightarrow_{\mathrm{cbv}}^{\star} v
$$

By reducing under an evaluation context and by chaining, we obtain:

$$
t_{1} t_{2} \longrightarrow_{\mathrm{cbv}}^{\star}\left(\lambda x \cdot u_{1}\right) t_{2} \longrightarrow_{\mathrm{cbv}}^{\star}\left(\lambda x \cdot u_{1}\right) v_{2} \longrightarrow_{\mathrm{cbv}} u_{1}\left[v_{2} / x\right] \longrightarrow_{\mathrm{cbv}}^{\star} v
$$

See LambdaCalculusBigStep/bigcbv_star_cbv.

Equivalence between small-step and big-step semantics

Lemma (From small-step to big-step, preliminary)
If $t_{1} \longrightarrow{ }_{c b v} t_{2}$ and $t_{2} \downarrow_{\text {cbv }} v$, then $t_{1} \downarrow_{\text {cbv }} v$.
Proof (Sketch).
By induction on the first hypothesis and case analysis on the second hypothesis. See LambdaCalculusBigStep/cbv_bigcbv_bigcbv.

Lemma (From small-step to big-step)
If $t \longrightarrow_{\text {cbv }}^{\star} v$, then $t \downarrow_{c b v} v$.
Proof.
By induction on the first hypothesis, using $v \downarrow_{\text {cbv }} v$ in the base case and the above lemma in the inductive case.
See LambdaCalculusBigStep/star_cbv_bigcbv.

MPRI 2.4

Efficient

execution mechanisms A naive interpreter
Natural semantics and closures
(1) Efficient execution mechanisms

A naïve interpreter
Natural semantics
Environments and closures
An efficient interpreter
(2) Scaling up the language

An alternative to naïve substitution

A basic need is to record that x is bound to v while evaluating a term t.
So far, we have used an eager substitution, $t[v / x]$, but:

- This is inefficient.
- This does not respect the separation between immutable code and mutable data imposed by current hardware and operating systems.

Idea: instead of applying the substitution [v / x] to the code, record the binding $x \mapsto v$ in a data structure, known as an environment.

An environment is a finite map of variables to values.

Let us try and define a new big-step evaluation judgement, e $\vdash t \downarrow_{\text {cbv }} v$.
(previous definition)
$\overline{\text { BigCbvValue }}$
$\overline{v \downarrow_{\text {cbv }} v}$
BigCbvApp
$t_{1} \downarrow_{\text {cbv }} \lambda x . u_{1}$
$t_{2} \downarrow_{\text {cbv }} v_{2}$
$\frac{u_{1}\left[v_{2} / x\right] \downarrow_{\text {cbv }} v}{t_{1} t_{2} \downarrow_{\text {cbv }} v}$

A first attempt

(attempt at a new definition)

$E B ı a C_{b v} V_{a r}$
$e(x)=v$

$e \vdash x \downarrow_{\text {cbv }} v$

EBigCbvLam
$\overline{e \vdash \lambda x . t \downarrow_{\mathrm{cbv}} \lambda x . t}$
EBigCbvApp

$$
e \vdash t_{1} \downarrow_{\mathrm{cbv}} \lambda x . u_{1}
$$

$$
e \vdash t_{2} \downarrow_{\mathrm{cbv}} v_{2}
$$

$$
\frac{e\left[x \mapsto v_{2}\right] \vdash u_{1} \downarrow_{\mathrm{cbv}} v}{e \vdash t_{1} t_{2} \downarrow_{\mathrm{cbv}} v}
$$

What is wrong with this definition?

MPRI 2.4 Semantics

Lexical scoping versus dynamic scoping

What value should the following OCaml code produce?

```
let x = 42 in
let f = fun () -> x in
let x = "oops" in
f()
```

What value should the following OCaml code produce?

```
let x = 42 in
let f = fun () -> x in
let x = "oops" in
f()
```

Well,

- The answer is 42 . This is lexical scoping. This is λ-calculus.
- The answer is not "oops". That would be dynamic scoping.

Lexical scoping versus dynamic scoping

What value should the following OCaml code produce?

```
let x = 42 in
let f = fun () -> x in
let x = "oops" in
f()
```

Well,

- The answer is 42 . This is lexical scoping. This is λ-calculus.
- The answer is not "oops". That would be dynamic scoping.

Thus, the free variables of a λ-abstraction must be evaluated:

- in the environment that exists at the function's creation site,
- not in the environment that exists at the function's call site.

A failed attempt

Thus, our first attempt is wrong:

- It implements dynamic scoping instead of lexical scoping.
- If $e \vdash t \downarrow_{\mathrm{cbv}} v$ and $f v(t) \subseteq d o m(e)$ then we would expect that v is closed and $t[e] \downarrow_{\mathrm{cbv}} v$ holds - but that is not the case.
- The candidate rule EBıgCbvLam obviously violates this property. It fails to record the environment that exists at function creation time.

How can we fix the problem?

Closures

The result of evaluating a λ-abstraction $\lambda x . t$, where $f v(\lambda x . t)$ may be nonempty, should not be $\lambda x . t$.

It should be a closure $\langle\lambda x . t \mid e\rangle$,

- that is, a pair of a λ-abstraction and an environment,
- in other words, a pair of a code pointer and a pointer to a heap-allocated data structure.

Landin, The Mechanical Evaluation of Expressions, 1964.

Closures and environments

The abstract syntax of closures is:

$$
c::=\langle\lambda x . t \mid e\rangle
$$

We expect the evaluation of a term to produce a closure:

$$
e \vdash t \downarrow_{\mathrm{cbv}} c
$$

Because evaluating x produces $e(x)$, an environment must be a finite map of variables to closures:

$$
e::=[] \mid e[x \mapsto c]
$$

Thus, the syntaxes of closures and environments are mutually inductive.

A big-step semantics with environments

Evaluating a λ-abstraction produces a newly allocated closure.

		EBigCbvApp $e \vdash t_{1} \downarrow_{\mathrm{cbv}}\left\langle\lambda x . u_{1} \mid e^{\prime}\right\rangle$
EBigCbvVar	EBigCbvLam	$e \vdash t_{2} \downarrow_{\text {cbv }} C_{2}$
$e(x)=c$	$f v(\lambda x . t) \subseteq \operatorname{dom}(e)$	$e^{\prime}\left[x \mapsto c_{2}\right] \vdash u_{1} \downarrow_{\text {cbv }} C$
$e \vdash x \downarrow_{\text {cbv }} c$	$e \vdash \lambda x . t \downarrow_{\text {cbv }}\langle\lambda x . t \mid e\rangle$	$e \vdash t_{1} t_{2} \downarrow_{\text {cbv }} C$

Invoking a closure causes the closure's code to be evaluated in the closure's environment, extended with a binding of formal to actual.

Equivalence between big-step semantics without and with environments

How can we relate the judgements $t \downarrow_{\mathrm{cbv}} v$ and $e \vdash t \downarrow_{\mathrm{cbv}} c$? What lemma should we state?

Equivalence between big-step semantics without and with environments

How can we relate the judgements $t \downarrow_{\mathrm{cbv}} v$ and $e \vdash t \downarrow_{\mathrm{cbv}} c$?
What lemma should we state?
Assuming t is closed, we would like to prove that

$$
t \downarrow_{\mathrm{cbv}} v
$$

holds if and only if

Equivalence between big-step semantics without and with environments

How can we relate the judgements $t \downarrow_{\mathrm{cbv}} v$ and $e \vdash t \downarrow_{\mathrm{cbv}} c$?
What lemma should we state?
Assuming t is closed, we would like to prove that

$$
t \downarrow_{\mathrm{cbv}} v
$$

holds if and only if

$$
[] \vdash t \downarrow_{\mathrm{cbv}} c
$$

holds for some closure c such that c represents v in a certain sense.

Decoding closures

c represents v can be defined as $\lceil c\rceil=v$, where $\lceil c\rceil$ is defined by:

$$
\lceil\langle\lambda x . t \mid e\rangle\rceil=(\lambda x . t)[\lceil e\rceil]
$$

and where the substitution $\lceil e\rceil$ maps every variable x in $\operatorname{dom}(e)$ to $\lceil e(x)\rceil$. ($\lceil c\rceil$ and $\lceil e\rceil$ are mutually inductively defined.)

Equivalence between big-step semantics without and with environments

One implication is easily established:
Lemma (Soundness of the environment semantics)
$e \vdash t \downarrow_{\text {cbv }}$ c implies $t[[e\rceil] \downarrow_{\text {cbv }}\lceil c\rceil$.
Proof (Sketch).
By induction on the hypothesis.
See LambdaCalculusBigStep/ebigcbv_bigcbv.
In particular, [] $\vdash t \downarrow_{\text {cbv }} c$ implies $t \downarrow_{\text {cbv }}\lceil c\rceil$.

Equivalence between big-step semantics without and with environments

The reverse implication requires a more complex statement: Lemma (Completeness of the environment semantics) If $t[[e\rceil] \downarrow_{c b v} v$, where $f v(t) \subseteq \operatorname{dom}(e)$ and e is well-formed, then there exists c such that $e+t \downarrow_{c b v} c$ and $\lceil c\rceil=v$.

Proof (Sketch).
By induction on the first hypothesis and by case analysis on t. See LambdaCalculusBigStep/bigcbv_ebigcbv.

In particular, if t is closed, then $t \downarrow_{\text {cbv }} v$ implies [] $\stackrel{t}{ } \downarrow_{\text {cbv }} c$, for some closure c such that $\lceil c\rceil=v$.

Equivalence between big-step semantics without and with environments

The notion of well-formedness on the previous slide is inductively defined:
$\frac{f v(\lambda x . t) \subseteq \operatorname{dom}(e)}{e \text { is well-formed }}$
$\langle\lambda x . t \mid e\rangle$ is well-formed $\quad \frac{\forall x, x \in \operatorname{dom}(e) \Rightarrow e(x) \text { is well-formed }}{e \text { is well-formed }}$

Lemma (Well-formedness is an invariant)
If $e \vdash t \downarrow_{c b v} c$ holds and e is well-formed, then c is well-formed.
Proof.
See LambdaCalculusBigStep/ebigcbv_wf_cvalue.
This property is exploited in the proof of the previous lemma.

MPRI 2.4

Pottier

Efficient

execution mechanisms A naive interpreter
Natural semantics Environments and closures
An efficient interpreter
(1) Efficient execution mechanisms

A naïve interpreter
Natural semantics
Environments and closures
An efficient interpreter
(2) Scaling up the language

From big-step semantics to interpreter, again

The big-step semantics $e \vdash t \downarrow_{\text {cbv }} c$ is a 3-place relation.
We now wish to define a (partial) function of two arguments e and t.
We could do this in OCaml, as we did earlier today.
Let us do it in Coq and prove this interpreter correct and complete!
See LambdaCalculusInterpreter.

The syntax of terms (in de Bruijn's representation) is as before.
The syntax of closures and environments is as shown earlier:

```
Inductive cvalue :=
| Clo: {bind term} -> list cvalue -> cvalue.
Definition cenv :=
    list cvalue.
```


A first attempt

```
Fail Fixpoint interpret (e : cenv) (t : term) : cvalue :=
    match t with
    | Var x =>
            nth \(x\) e dummy_cvalue
            (* dummy is used when \(x\) is out of range *)
    | Lam t =>
        Clo t e
    | App t1 t2 =>
        let \(c v 1\) := interpret e t1 in
        let \(c v 2\) := interpret e t2 in
        match cv1 with Clo u1 e' =>
            interpret (cv2 : : e') u1
        end
    end.
```

Why is this definition rejected by Coq?

A standard trick: fuel

We parameterize the interpreter with a maximum recursive call depth n.

```
Fixpoint interpret (n : nat) e t : option cvalue :=
    match n with
    | 0 => None (* not enough fuel *)
    | S n =>
        match t with
        | Var x => Some (nth x e dummy_cvalue)
        | Lam t }\quad>\mathrm{ Some (Clo t e)
        | App t1 t2 =>
            interpret n e t1 >>= fun cv1 =>
            interpret n e t2 >>= fun cv2 =>
            match cv1 with Clo u1 e' =>
                interpret n (cv2 :: e') u1
            end
    end end.
```

The interpreter can now fail, therefore has return type option cvalue.

Equivalence between the big-step semantics and the interpreter

If the interpreter produces a result, then it is a correct result.
Lemma (Soundness of the interpreter)
If interpret n e $t=$ Some c and $f v(t) \subseteq d o m(e)$ and e is well-formed then $e \vdash t \downarrow_{\text {cbv }} c$ holds.

Proof (Sketch).
By induction on n, by case analysis on t, and by inspection of the first hypothesis. See LambdaCalculusInterpreter/interpret_ebigcbv.

An interpreter that always returns None would satisfy this lemma, hence the need for a completeness statement...

Equivalence between the big-step semantics and the interpreter

If the evaluation of t is supposed to produce c, then, given sufficient fuel, the interpreter returns c.
Lemma (Completeness of the interpreter)
If $e \vdash t \downarrow_{c b v} c$, then there exists n such that interpret $n e t=$ Some c.

Proof (Sketch).

By induction on the hypothesis, exploiting the fact that interpret is monotonic in n, that is, $n_{1} \leq n_{2}$ implies interpret n_{1} e $t \leq$ interpret n_{2} e t, where the "definedness" partial order \leq is generated by None \leq Some c. See LambdaCalculusInterpreter/ebigcbv_interpret.

Summary

If t is closed and v is a value, then the following are equivalent:

$$
\left.\left.\begin{array}{c}
t \longrightarrow_{\mathrm{cbv}}^{\star} v \\
t \downarrow_{\mathrm{cbv}} v
\end{array}\right\} \begin{array}{l}
{[]+t \downarrow_{\mathrm{cbv}} c} \\
\lceil c\rceil=v
\end{array}\right\} \begin{aligned}
& \text { interpret } n[] t=\text { Some } c \\
& \lceil c\rceil=v
\end{aligned}
$$

small-step substitution semantics
big-step substitution semantics
big-step environment semantics
interpreter

Complexity and cost model

For simplicity, we have represented environments as lists.
Thus, extension has complexity $O(1)$, but lookup has complexity $O(n)$, where n is the number of variables in scope.

For greater efficiency, one should use a data structure that allows both operations in time $O(\log n)$, such as Okasaki's random access lists.

When "extracting" the interpreter from Coq to OCaml, one should also instruct Coq to represent natural numbers as OCaml machine integers.

Okasaki, Purely functional data structures, 1996 (§6.4.1).

Complexity and cost model

With these changes, the interpreter is reasonably efficient.
For time, it offers a relatively clear cost model:

- Evaluating a variable costs $O(\log n)$.
- Evaluating a λ-abstraction costs $O(1)$.
- Evaluating an application costs $O(\log n)$.
n is the maximum number of variables in scope and could be considered $O(1)$, as it depends only on the program's text, not on the input data.

Caveat: the cost of garbage collection is not accounted for in this model.

Digression: the cost of garbage collection

Let H be the total heap size.
Let R be the total size of the live objects. Thus, $R \leq H$.
Assuming a copying collector, one collection costs $O(R)$.
Collection takes place when the heap is full, so frees up $H-R$ words.
Thus, the amortized cost of collection, per freed-up word, is

$$
\frac{O(R)+O(H)}{H-R}
$$

Under the hypothesis $\frac{R}{H} \leq \frac{1}{2}$, this cost is $O(1)$. That is,
Provided the heap is large enough, freeing up an object takes constant (amortized) time.

Full closures versus minimal closures

In reality, this interpreter has one subtle but serious inefficiency.
When a closure $\langle\lambda x . t \mid e\rangle$ is allocated, the entire environment e is stored in it, even though $f v(\lambda x . t)$ may be a strict subset of the domain of e.

We store data that the closure will never need. This is a space leak!
To fix this, one should store a trimmed-down environment in the closure.
Exercise: state and prove that, if x does not occur free in t, then the evaluation of t in an environment e does not depend on the value $e(x)$.

Exercise: define an optimized interpreter where, at a closure allocation, every unneeded value in e is replaced with a dummy value. Prove it equivalent to the simpler interpreter.

MPRI 2.4

Pottier

Efficient

execution mechanisms
A naive interpreter
Natural semantics Environments and closures
An efficient interpreter
(1) Efficient execution mechanisms A naïve interpreter Natural semantics Environments and closures An efficient interpreter
(2) Scaling up the language

Syntactic sugar

Some constructs may be be viewed as syntactic sugar, that is, compiled away by macro-expansion.
E.g., "let $x=t_{1}$ in t_{2} " can be viewed as sugar for " $\left(\lambda x . t_{2}\right) t_{1}$ ".

This yields the desired semantics. The following are lemmas:

Leev	LetL
let $x=v$ in $t \longrightarrow_{\text {cbv }} t[v / x]$	$t \longrightarrow_{\text {cbv }} t^{\prime}$
let $x=t$ in $u \longrightarrow_{\text {cbv }}$ let $x=t^{\prime}$ in u	

One may prefer to view "let $x=t_{1}$ in t_{2} " as a primitive construct if there is:

- a special typing rule for it, e.g., in ML;
- a special compilation rule for it, e.g., in the CPS transform.
- a restriction of applications to the form " v ", so "let" is the only sequencing construct.

Products

It is easy to add pairs and projections to the (call-by-value) λ-calculus.

$$
\begin{array}{rll}
t & ::=\ldots|(t, t)| \pi_{i} t & \text { where } i \in\{0,1\} \\
v & ::=\cdots \mid(v, v) & \\
E & ::=\cdots|(E, t)|(v, E) \mid \pi_{i} E &
\end{array}
$$

One new reduction rule is needed:

$$
\frac{\text { PRoJ }}{\pi_{i}\left(v_{0}, v_{1}\right) \longrightarrow_{\mathrm{cbv}} v_{i}}
$$

Exercise: Extend the call-by-name λ-calculus with pairs and projections.
Exercise: Propose a definition of pairs and projections as sugar in the call-by-value λ-calculus. Check that this yields the desired semantics.

One similarly adds injections and case analysis to CBV λ-calculus.

$$
\begin{array}{rlll}
t & ::= & \ldots\left|\operatorname{inj}_{j} t\right| \text { case } t \text { of } x . t \| x . t \quad \text { where } i \in\{0,1\} \\
v & ::= & \cdots \mid \operatorname{inj}_{j} v \\
E & ::= & \cdots\left|\operatorname{inj}_{j} E\right| \text { case } E \text { of } x . t \| x . t
\end{array}
$$

One new reduction rule is needed:
Case

$$
\overline{\text { case } \operatorname{inj}}{ }_{i} v \text { of } x_{0} \cdot t_{0} \| x_{1}, t_{1} \longrightarrow_{\text {cbv }} t_{i}\left[v / x_{i}\right]
$$

Exercise: Extend the call-by-name λ-calculus with sums.

Recursive functions

The construct $\lambda x . t$ is replaced with $\mu f . \lambda x . t$.

$$
\begin{array}{rlll}
t & ::= & \ldots \mid \mu f . \lambda x . t \\
v & ::= & \ldots \mid \mu f . \lambda x . t
\end{array}
$$

$\lambda x . t$ is sugar for $\mu_{-} . \lambda x . t$.
"let rec $f x=t$ in u " is sugar for "let $f=\mu f . \lambda x . t$ in u ".
The β-reduction rule is amended as follows:

$$
\frac{\beta_{v}}{(\mu f . \lambda x . t) v \longrightarrow_{\operatorname{cov} v} t[v / x][\mu f . \lambda x . t / f]}
$$

A few things to remember

An efficient interpreter uses environments and closures, not substitutions.

- It can (easily) be proved correct and complete!

There are several styles of (operational) semantics.

- They can (easily) be proved equivalent!

For denotational semantics, see:

Benton, Birkedal, Kennedy, Varming, Formalizing domains, ultrametric spaces and semantics of programming languages, 2010.

Dockins, Formalized, Effective Domain Theory in Coq, 2014.

A few things to remember

Machine-checked proofs are hard when your definitions are too complex, your statements are wrong, and you are missing key lemmas and tactics. By which I mean, of course,

A few things to remember

Machine-checked proofs are hard when your definitions are too complex, your statements are wrong, and you are missing key lemmas and tactics. By which I mean, of course, that machine-checking helps (forces) you to

- get definitions right,
- write precise statements,
- develop high-level lemmas and tactics.
"But as for you, be strong and do not give up, for your work will be rewarded."

