
MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

1/21

MPRI 2.4

Operational semantics and reduction strategies

François Pottier

2017

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

2/21

The λ-calculus

The formal model that underlies all functional programming languages.

Abstract syntax:
t ,u ::= x | λx .t | t t (terms)

Reduction:
(λx .t) u −→ t [u/x] (β)

Mnemonic: read t [u/x] as “t , where u is substituted for x”.

Landin, Correspondence betw. ALGOL 60 and Church’s λ-notation, 1965.

http://doi.acm.org/10.1145/363744.363749

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

3/21

From the λ-calculus to a functional
programming language

Start from the λ-calculus, and follow several steps:

• Fix a reduction strategy (today).
• Develop efficient execution mechanisms (next week).
• Enrich the language with primitive data types and operations,

recursion, algebraic data structures, and so on (next week).
• Define a static type system (Rémy’s lectures).

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

4/21

1 Reduction strategies

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

5/21

Operational semantics

Plotkin: — It is only through having an operational semantics that the
[λ-calculus can] be viewed as a programming language.

Scott: — Why call it operational semantics? What is operational about it?

An operational semantics describes the actions of a machine,
in the simplest possible manner / at the most abstract level.

Plotkin, A Structural Approach to Operational Semantics, 1981, (2004).

Plotkin, The Origins of Structural Operational Semantics, 2004.

http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/Origins_SOS.pdf

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

6/21

The call-by-value strategy

Values form a subset of terms:

t ,u ::= x | λx .t | t t (terms)
v ::= x | λx .t (values)

A value represents the result of a computation.

The call-by-value reduction relation t −→cbv t ′ is inductively defined:

βv

(λx .t) v −→cbv t [v/x]

AppL
t −→cbv t ′

t u −→cbv t ′ u

AppVR
u −→cbv u′

v u −→cbv v u′

This is known as a small-step operational semantics.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

7/21

Example

This is a proof (a.k.a. derivation) that one reduction step is permitted:

x[1/x] = 1

(λx .x) 1 −→cbv 1
βv

(λx .λy .y x) ((λx .x) 1) −→cbv (λx .λy .y x) 1
AppR

(λx .λy .y x) ((λx .x) 1) (λx .x) −→cbv (λx .λy .y x) 1 (λx .x)
AppL

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

8/21

Features of call-by-value reduction

• Weak reduction. One cannot reduce under a λ-abstraction.

t −→cbv t ′

λx .t −→cbv λx .t ′

Thus, values do not reduce.
Also, we are interested in reducing closed terms only.

• Call-by-value. An actual argument is reduced to a value before it is
passed to a function.

(λx .t) v −→cbv t [v/x] (λx .t) (u1 u2) −→cbv t [u1 u2/x]

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

9/21

Features of call-by-value reduction

• Left-to-right. In an application t u, the term t must be reduced to a
value before u can be reduced at all.

AppVR
u −→cbv u′

v u −→cbv v u′

• Determinism. For every term t , there is at most one term t ′ such that
t −→cbv t ′ holds.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

10/21

Reduction sequences

Sequences of reduction steps describe the behavior of a term.

The three following situations are mutually exclusive:

• Termination: t −→cbv t1 −→cbv t2 −→cbv . . . −→cbv v
The value v is the result of evaluating t .
The term t converges to v.

• Divergence: t −→cbv t1 −→cbv t2 −→cbv . . . −→cbv tn −→cbv . . .
The sequence of reductions is infinite.
The term t diverges.

• Error: t −→cbv t1 −→cbv t2 −→cbv . . . −→cbv tn X−→cbv ·

where tn is not a value, yet does not reduce: tn is stuck.
The term t goes wrong. This is a runtime error.

Type systems rule out errors (Milner, 1978) or both errors and divergence.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.5276

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

11/21

Examples of reduction sequences

Termination:

(λx .λy .y x) ((λx .x) 1) (λx .x) −→cbv (λx .λy .y x) 1 (λx .x)
−→cbv (λy .y 1) (λx .x)
−→cbv (λx .x) 1
−→cbv 1

Divergence:

(λx .x x) (λx .x x) −→cbv (λx .x x) (λx .x x) −→cbv . . .

Error:
(λx .x x) 2 −→cbv 2 2 X−→cbv ·

The active redex is highlighted in red.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

12/21

An alternative style: evaluation contexts

First, define head reduction:

βv

(λx .t) v −→head
cbv t [v/x]

Then, define reduction as head reduction under an evaluation context:

Ctx
t −→head

cbv t ′

E[t] −→cbv E[t ′]

where evaluation contexts E are defined by E ::= [] | E u | v E.

Wright and Felleisen, A syntactic approach to type soundness, 1992.

http://ecee.colorado.edu/ecen5533/fall11/reading/wright-syntactic.pdf

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

13/21

Unique decomposition

In this alternative style, the determinism of the reduction relation follows
from a unique decomposition lemma:

Lemma (Unique Decomposition)

For every term t, there exists at most one pair (E,u) such that t = E[u]
and u −→head

cbv ·.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

14/21

The call-by-name strategy

The call-by-name reduction relation t −→cbn t ′ is defined as follows:

β

(λx .t) u −→cbn t [u/x]

AppL
t −→cbn t ′

t u −→cbn t ′ u

The unevaluated actual argument is passed to the function.

It is later reduced if / when / every time the function demands its value.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

15/21

An example reduction sequence

(λx .λy .y x) ((λx .x) 1) (λx .x) −→cbn (λy .y ((λx .x) 1)) (λx .x)
−→cbn (λx .x) ((λx .x) 1)
−→cbn (λx .x) 1
−→cbn 1

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

16/21

Call-by-value versus call-by-name

If t terminates under CBV, then it also terminates under CBN (?).

The converse is false:

(λx .1) ω −→cbn 1
(λx .1) ω −→

∞

cbv

where ω = (λx .x x) (λx .x x) diverges under both strategies.

Call-by-value can perform fewer reduction steps:
(λx . x + x) t evaluates t once under CBV, twice under CBN.

Call-by-name can perform fewer reduction steps:
(λx . 1) t evaluates t once under CBV, not at all under CBN.

(?) In fact, the standardization theorem implies that
if t can be reduced to a value via any strategy,

then it can be reduced to a value via CBN.
See Takahashi (1995).

http://dx.doi.org/10.1006/inco.1995.1057

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

17/21

Encoding call-by-name in a CBV language

Use thunks: functions λ_.u whose purpose is to delay the evaluation of u.

JxK = x ()
Jλx .tK = λx .JtK
Jt uK = JtK (λ_.JuK)

Exercise: Can you state that this encoding is correct? Can you prove it?

In a simply-typed setting, this transformation is type-preserving: that is,
Γ ` t : T implies JΓK ` JtK : JTK, where

JT1 → T2K = (unit→ JT1K)→ JT2K

and where Jx1 : T1; . . . ; xn : TnK is x1 : unit→ JT1K; . . . ; xn : unit→ JTnK.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

18/21

Encoding call-by-value in a CBN language

This is somewhat more involved.

The call-by-value continuation-passing style (CPS) transformation,
studied later on in this course, achieves this.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

19/21

Call-by-need

Call-by-need, also known as lazy evaluation,
eliminates the main inefficiency of call-by-name
(namely, possibly repeated computation)
by introducing memoization.

It, too, can be defined via an operational semantics
(Ariola and Felleisen, 1997; Maraist, Odersky, Wadler, 1998).

It is used in Haskell, where it encourages a modular style of programming.

Hughes, Why functional programming matters, 1990.

Also see Harper’s and Augustsson’s blog posts on laziness.

http://repository.readscheme.org/ftp/papers/plsemantics/felleisen/jfp96-af.pdf
https://doi.org/10.1017/S0956796898003037
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
https://existentialtype.wordpress.com/2011/04/24/the-real-point-of-laziness/
http://augustss.blogspot.fr/2011/05/more-points-for-lazy-evaluation-in.html

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

20/21

Newton-Raphson iteration (after Hughes)

This is pseudo-Haskell code. The colon : is “cons”.

An approximation of a square root can be computed as follows:

next n x = (x + n / x) / 2
repeat f a = a : (repeat f (f a))
within eps (a : b : rest) =

if abs (a - b) <= eps then b
else within eps (b : rest)

sqrt a0 eps n =
within eps (repeat (next n) a0)

repeat (next n) a0 is a producer of an infinite stream of numbers.

Its type is just “list of numbers” – look Ma, no iterators!

The consumer within eps decides how many elements to demand.

The two are programmed independently.

MPRI 2.4
Semantics

François
Pottier

Reduction
strategies

21/21

Encoding call-by-need in a CBV language

Call-by-need can be encoded into CBV by using memoizing thunks:

JxK = force x
Jλx .tK = λx .JtK
Jt uK = JtK (suspend (λ_.JuK))

“suspend (λ_.u)” is written lazy u in OCaml.

“force x” is written Lazy.force x.

Such a thunk evalutes u when first forced,
then memoizes the result,
so no computation is required if the thunk is forced again.

Exercise: port Newton-Raphson iteration to OCaml.
Make sure that each element is computed at most once
and no more elements than necessary are computed.
Write tests to verify these properties.

	Reduction strategies

