
MPRI 2.4
Presentation

François
Pottier

1/9

Presentation

MPRI 2.4

François Pottier

2017



MPRI 2.4
Presentation

François
Pottier

2/9

Why follow this course?

Computers are wonderful machines...

... but they don’t always do what was intended.



MPRI 2.4
Presentation

François
Pottier

2/9

Why follow this course?

Computers are wonderful machines...

... but they don’t always do what was intended.



MPRI 2.4
Presentation

François
Pottier

3/9

Why follow this course?

The theory of programming languages
aims to describe

how programs are structured,
what they mean,
how they are interpreted or compiled,

and how one can prove
properties of programs
and properties of tools,
such as type-checkers or compilers.

https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://www.cis.upenn.edu/~bcpierce/tapl/


MPRI 2.4
Presentation

François
Pottier

4/9

What is functional programming?

Programming in Scheme, SML, OCaml, Haskell, Agda, Coq, F*, . . .

Key features:

• Immutable variables and values. Mutable state discouraged.
• Functions as values. Higher-order functions.
• Algebraic data structures (lists, trees, . . . ) as values.
• Recursion. Tail recursion preferred to loops.
• Close to mathematical language and to the λ-calculus.
• A taste for expressive, safe, static type systems. Polymorphism.
• Automatic memory management preferred.
• Equational reasoning.

— A program does not “do” something; it “is” something.



MPRI 2.4
Presentation

François
Pottier

5/9

What is functional programming?

(* Do not think of data as memory blocks and pointers --
think in terms of sums, products, and recursion. *)

type ’a list =
| []
| (::) of ’a * ’a list



MPRI 2.4
Presentation

François
Pottier

6/9

What is functional programming?

(* Parameterize [map] with the transformation [f]
that should be applied to every list element. *)

let rec map f xs =
(* Let the structure of the data

guide the structure of the code. *)
match xs with
| [] -> []
| x :: xs -> f x :: map f xs

(* Do not modify the input list
-- allocate a new list. *)

let add x ys =
map (fun y -> x + y) ys
(* ^^^^^^^^^^^^^^^ This closure refers to [x]. *)



MPRI 2.4
Presentation

François
Pottier

7/9

What is functional programming?

(* Do not write a loop -- write a tail-recursive function. *)
let rec rev_append xs ys =

match xs with
| [] -> ys
| x :: xs -> rev_append xs (x :: ys)

(* Do not be afraid to write many small functions. *)
let rev xs =

rev_append xs []

Steele, Lambda: the ultimate GOTO, 1977.

https://dspace.mit.edu/bitstream/handle/1721.1/5753/AIM-443.pdf


MPRI 2.4
Presentation

François
Pottier

8/9

Why learn functional programming?

Functional programming is a culture — a school of thought.

It differs from “mainstream” programming in pedagogical ways:

• A belief that mutable data, jumps and loops are not fundamental,
• A belief that functions are simpler and often as powerful as objects,
• A taste for declarative thinking.

Furthermore, it has a tradition for solid (meta)theory:

• formal definitions of semantics, type systems, code transformations...
• proofs of type soundness, proofs of semantic preservation, ...
• moving towards machine-checked definitions and proofs.



MPRI 2.4
Presentation

François
Pottier

9/9

Why follow this course?

In this course, we wish to teach at the same time:

• several key programming techniques;
• the (meta)theory of programming languages.


