
Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

1/1

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

2017-12-08

yrg@irif.fr
yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

2/1

Plan

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

3/1

What is type inference?

Informal definition
Type inference is a process that computes a type τ for a term t
under some typing environment Γ if such a type exists. In other
words, we are reading the judgment:

Γ ⊢ t : τ

where t and Γ are the inputs and τ is the output.

Hence, type inference determines if a term is typable.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

4/1

Too vague!
Consider:

1 let f = fun x -> x + 1

Intuitively, a type inference engine must be able to process the
term x + 1 under an environment where the type of x is unknown.

Therefore, the typing environments used by a type inference engine
differ slightly from the typing environments used by a type checker
in the sense that the types bound to identifiers may contain pieces of
unknown typing information. As soon as the syntax for types offers a
notion of type variables, unknown typing information can be
represented by free type variables.

This means that a free type variable occurring in a judgment may
have two distinct roles: either it denotes a parameter of the typing
derivation 1, or it denotes an unknown type to be instantiated by the
inference algorithm. This distinction must be formally made.

1It is morally universally quantified at the meta-level.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

5/1

Let us be more formal!
Let us write V to denote an infinite set of type variable identifiers
from which we can generate fresh names. These type variables will
denote the pieces of unknown typing information of the inference
problem. The goal of type inference is to determine if these type
variables can be assigned types to ensure the typability of the input
term under the input environment.

Definition
A type inference engine is a partial function I . This function
expects V , as well as a typing environment Γ and a term t. When
defined, this function returns ϕ, an idempotent substitution whose
domain is a finite subset of V and an inferred type τ .

Definition
A type inference engine I is sound if whenever
I(V,Γ, t) = (V ′, ϕ, τ) then ϕ(Γ) ⊢ t : τ .

The substitution ϕ witnesses the typability of t under Γ.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

6/1

Parenthesis: α or ?α ?

We could have followed another design choice by introducing a
notion ofmeta-variables2 to represent unknown types.

Yet, we will see that the strength of Hindley-Milner type system is to
play with type variables to promote them from unknown types to
parameters through the mechanism of generalization.

2As this is done in the Coq system for instance.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

7/1

Soundness is not enough

As soon as a term is typable, the type inference algorithmmust be
able to find a typing for this term.

Definition
A type inference engine is complete and principal if whenever
there exists a substitution ϕ such that ϕ(Γ) ⊢ t : ϕ(τ) holds, then
there exists ϕ′, ϕ′′ and V disjoint from FTV(Γ, τ) such that:

I(V,Γ, t) = (V ′, ϕ′′, τ ′)
ϕ′′(τ ′) = τ
ϕ(α) = (ϕ′′ ◦ ϕ′)(α) ∀α /∈ V

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

8/1

Type inference in a compiler
Type inference algorithms can be tricky to implement, in particular
when we want them to be efficient. Fortunately, we have a safety
net: the typechecker for the corresponding explicitly-typed language!

In practice, the so-called De Bruijn architecture is encouraged:

Inference
Implicitly-typed program

Elaboration
This extended type inference must elaborate an explicitly-typed
program as a proof witness for the soundness of its answer. This
proof is checked by an hopefully simpler, smaller and trustworthy
program, the typechecker. Notice that the principality of the inferred
program is not checked here.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

8/1

Type inference in a compiler
Type inference algorithms can be tricky to implement, in particular
when we want them to be efficient. Fortunately, we have a safety
net: the typechecker for the corresponding explicitly-typed language!

In practice, the so-called De Bruijn architecture is encouraged:

Inference
Implicitly-typed program

Ill-typed

Elaboration
This extended type inference must elaborate an explicitly-typed
program as a proof witness for the soundness of its answer. This
proof is checked by an hopefully simpler, smaller and trustworthy
program, the typechecker. Notice that the principality of the inferred
program is not checked here.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

8/1

Type inference in a compiler
Type inference algorithms can be tricky to implement, in particular
when we want them to be efficient. Fortunately, we have a safety
net: the typechecker for the corresponding explicitly-typed language!

In practice, the so-called De Bruijn architecture is encouraged:

Inference
Implicitly-typed program

Ill-typed

Checking
Explicitly-typed program

Elaboration
This extended type inference must elaborate an explicitly-typed
program as a proof witness for the soundness of its answer. This
proof is checked by an hopefully simpler, smaller and trustworthy
program, the typechecker. Notice that the principality of the inferred
program is not checked here.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

8/1

Type inference in a compiler
Type inference algorithms can be tricky to implement, in particular
when we want them to be efficient. Fortunately, we have a safety
net: the typechecker for the corresponding explicitly-typed language!

In practice, the so-called De Bruijn architecture is encouraged:

Inference
Implicitly-typed program

Ill-typed

Checking
Explicitly-typed program

Inference is wrong!

OK

Elaboration
This extended type inference must elaborate an explicitly-typed
program as a proof witness for the soundness of its answer. This
proof is checked by an hopefully simpler, smaller and trustworthy
program, the typechecker. Notice that the principality of the inferred
program is not checked here.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

8/1

Type inference in a compiler
Type inference algorithms can be tricky to implement, in particular
when we want them to be efficient. Fortunately, we have a safety
net: the typechecker for the corresponding explicitly-typed language!

In practice, the so-called De Bruijn architecture is encouraged:

Inference
Implicitly-typed program

Ill-typed

Checking
Explicitly-typed program

Inference is wrong!

OK

Elaboration
This extended type inference must elaborate an explicitly-typed
program as a proof witness for the soundness of its answer. This
proof is checked by an hopefully simpler, smaller and trustworthy
program, the typechecker. Notice that the principality of the inferred
program is not checked here.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

9/1

From type inference to elaboration

Definition
A programming language is implicitly typed if its syntax allows the
introduction of an identifier without declaring its type. The language
is explicitly typed otherwise.

LetLx be an explicitly typed language, andLi be an implictly typed
language sharing the same type-erasure semantics and the same
type algebra.

Definition
A sound elaboration engine is a partial function E such that:

If E(V,Γ, t) = (V ′, ϕ, τ, t⋆) where t ∈ Li

then t⋆ ∈ Lx and ϕ(Γ) ⊢ t⋆ : ϕ(τ)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

10/1

This course

▶ ML, syntax, semantics and type system(s)
▶ AlgorithmW in OCaml
▶ Constraint-based approach
▶ Extensions of ML type inference

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

11/1

Plan

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

12/1

Plan

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

13/1

MiniML with constants

Syntax for terms (Syntax.ITerm.t)

t ::= x
| λx.t
| t t
| let x = t in t

Notice that the absence of type annotations on bindings.

Operational semantics
We assume a call-by-value weak reduction semantics.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

14/1

A stratified type algebra
Syntax for types (Syntax.Type.t)

τ ::= α
| ε(τ)

ε ::= →2| int0 | . . .

A type is a first-order term.

Syntax for type schemes (Syntax.TypeScheme.t)

σ ::= ∀α.τ

▶ The ∀ binder quantifies over (mono)types.
▶ Quantification is prenex : it cannot appear everywhere as in F.
▶ This is predicative rank-1 parametric polymorphism.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

15/1

Instance relation

Definition
The type τ ′ is an instance of the type scheme ∀α.τ , written
∀α.τ ⪯ τ ′, if there exists τ such that [α 7→ τ]τ = τ ′.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

16/1

Type system

The type system of ML is defined by two typing judgments:

Γ ⊢ t : τ and Γ ⊢ t : ∀α.τ

where Γ ::= • | Γ(x : σ).

While the first judgment is a standard typing judgment, the second
can be seen as a family of standard typing judgments, parameterized
by the types α.

Going from the second jugment to the first is an instanciation. The
other way around is a generalization:

Inst
Γ ⊢ t : σ σ ⪯ τ

Γ ⊢ t : τ

Gen
Γ ⊢ t : τ α # FTV(Γ)

Γ ⊢ t : ∀α.τ

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

17/1

Exercise

Exercise
Do you remember why the hypothesis

α # FTV(Γ)

is important in the Rule (Gen)?

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

18/1

Do you know ML?

Is

1 let f x = x in (f 0, f 'a')

equivalent to

1 (fun f -> (f 0, f 'a')) (fun x -> x)

?

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

19/1

Typing rules
In addition to (Gen), the rule (Var) can be used to introduce
parameterized typing judgments:

Var

Γ ⊢ x : Γ(x)

Binding type schemes to variables is the role of (Let):

Let
Γ ⊢ t : σ Γ, (x : σ) ⊢ u : τ

Γ ⊢ let x = t in u : τ

The rules for applications and abstractions are the same as for STLC:

App
Γ ⊢ t : τ1 → τ2 Γ ⊢ u : τ1

Γ ⊢ t u : τ2

Abs
Γ, (x : ∀∅.τ1) ⊢ t : τ2

Γ ⊢ λx.t : τ1 → τ2

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

20/1

Properties of this type system

(We defer the discussion about the soundness of this type system.)

Question 1
Given an environment Γ and a typable term t, is there a unique
type τ such that Γ ⊢ t : τ?

Question 2
Given a derivable judgment Γ ⊢ t : τ , is there a unique typing
derivation that has this conclusion?

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

20/1

Properties of this type system

(We defer the discussion about the soundness of this type system.)

Question 1
Given an environment Γ and a typable term t, is there a unique
type τ such that Γ ⊢ t : τ? No!

Question 2
Given a derivable judgment Γ ⊢ t : τ , is there a unique typing
derivation that has this conclusion? No! The rules are not
syntax-directed.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

20/1

Properties of this type system

(We defer the discussion about the soundness of this type system.)

Question 1
Given an environment Γ and a typable term t, is there a unique
type τ such that Γ ⊢ t : τ? No!

Question 2
Given a derivable judgment Γ ⊢ t : τ , is there a unique typing
derivation that has this conclusion? No! The rules are not
syntax-directed.

Question 1 will be tackled by the existence of principal type schemes.
Let us deal with Question 2 for now.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

21/1

Syntax directed typing rules
We define another type system enjoying uniqueness of typing
derivation, similar to the previous one except that the rules (Gen),
(Inst), (Var) et (Let) are replaced by 3:

Let-Gen
Γ ⊢ t : τ1

α = FTV(τ1) \ FTV(Γ)
Γ, (x : ∀α.τ1) ⊢ u : τ2

Γ ⊢ let x = t in u : τ2

Var-Inst
Γ(x) ⪯ τ

Γ ⊢ x : τ

Since the system is now syntax-directed, does that mean that we
have a type inference algorithm? or at least a type checking
algorithm?

Unfortunately, no. There remain too many choices:

▶ What are the types of λ-bound identifiers?
▶ Howmuch generalization is needed?

Typability in ML is a non local property.

3We defer the proof of equivalence of the two type systems.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

21/1

Syntax directed typing rules
We define another type system enjoying uniqueness of typing
derivation, similar to the previous one except that the rules (Gen),
(Inst), (Var) et (Let) are replaced by 3:

Let-Gen
Γ ⊢ t : τ1

α = FTV(τ1) \ FTV(Γ)
Γ, (x : ∀α.τ1) ⊢ u : τ2

Γ ⊢ let x = t in u : τ2

Var-Inst
Γ(x) ⪯ τ

Γ ⊢ x : τ

Since the system is now syntax-directed, does that mean that we
have a type inference algorithm? or at least a type checking
algorithm? Unfortunately, no. There remain too many choices:

▶ What are the types of λ-bound identifiers?
▶ Howmuch generalization is needed?

Typability in ML is a non local property.
3We defer the proof of equivalence of the two type systems.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

22/1

ML typing constraints

The non locality of the typability problem is better handled by
unification constraints. Historically, these constraints are implicitly
generated and solved on-the-fly by an algorithm calledW .

More recent approaches split type inference into two phases: a
constraint generation and the solving of these contraints.

We will now implement and proveW , turn it into an elaboration
algorithm and present a constraint-based approach to ML type
inference.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

23/1

Plan

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

24/1

Do it yourself!

Programming exercise

1. Complete Inference.algorithm_w.
2. Fix the bug in Syntax.Substitution.compose.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

25/1

Good oldW of 82

W(V,Γ, x) = (V \ β, id, [α 7→ β]τ)

where Γ(x) = ∀α.τ and β ∈ V

W(V,Γ, λx.t) = (V ′, ϕ, ϕ(α) → τ)
where α ∈ V

and W(V \ α,Γ; (x : α), t) = (V ′, ϕ, τ)

W(V,Γ, t u) = (V ′′, ϕ ◦ ϕt ◦ ϕu, ϕ(α))
where α ∈ V

and W(V \ α,Γ, u) = (V ′, ϕu, τu)
and W(V ′, ϕu(Γ), t) = (V ′′, ϕt, τt)

and ϕ = MGU(τt
?
= τu → α)

W(V,Γ, let x = t in u) = (V ′′, ϕ2 ◦ ϕ1, τ2)
where W(V,Γ, t) = (V ′, ϕ1, τ1)

and W(V ′,Γ, (x : σ), u) = (V ′′, ϕ2, τ2)
and σ = GEN(Γ, ϕ1(τ1))

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

26/1

Auxiliary functions
Let us writeU for a first-order unification problemmade of a
conjunction of equalities between types.

MGU(x ?
= x ∧ U) = MGU(U)

MGU(τ ?
= x ∧ U) = MGU(x ?

= τ ∧ U)
when τ is not a variable

MGU(x ?
= τ ∧ U) = MGU(U [x 7→ τ]) ◦ [x 7→ τ]

when τ is not a variable and x /∈ FTV(τ)
MGU(ε1(τ1)

?
= ε2(τ2) ∧ U) = MGU(τ1

?
= τ2 ∧ U)

when ε1 = ε2
MGU(⊤) = id

MGU is undefined for the other cases.

Besides, the generalization operation over types is defined as:

GEN(Γ, τ) = ∀(FTV(τ) \ FTV(Γ)).τ

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

27/1

Soundness

Theorem (W is sound)
IfW(V,Γ, t) = (V ′, ϕ, τ) then ϕ(Γ) ⊢ t : τ

Proof.
By induction over terms. (Details on the blackboard.)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

28/1

Completeness and principality

Theorem (W is complete and computes principal types)
If there exists ϕ and τ such that ϕ(Γ) ⊢ t : τ ,
then there exists V ′, ϕ′, τ ′ and ρ such that

W(V,Γ, t) = (V ′, ϕ′, τ ′)
τ = ρ(τ ′)

ϕ(α) = ϕ′(ρ(α)) ∀α ̸∈ V

Proof.
By induction over terms. (Details on the blackboard.)

(In these proofs, the substitution manipulations are “tricky”!)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

28/1

Completeness and principality

Theorem (W is complete and computes principal types)
If there exists ϕ and τ such that ϕ(Γ) ⊢ t : τ ,
then there exists V ′, ϕ′, τ ′ and ρ such that

W(V,Γ, t) = (V ′, ϕ′, τ ′)
τ = ρ(τ ′)

ϕ(α) = ϕ′(ρ(α)) ∀α ̸∈ V

Proof.
By induction over terms. (Details on the blackboard.)

(In these proofs, the substitution manipulations are “tricky”!)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

29/1

Back to Question 1

Question 1
Given an environment Γ and a typable term t, is there a unique type τ
such that Γ ⊢ t : τ? No!

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

29/1

Back to Question 1

Question 1
Given an environment Γ and a typable term t, is there a unique type τ
such that Γ ⊢ t : τ? No! But one can find a type that rules them all!
W is a constructive proof of that fact!

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

30/1

Complexity ofW

Complexity

▶ ML typability is NP-hard and DEXPTIME-complete.
▶ Here is a typical example that requires an exponential time to

type:

1 let f0 = fun x -> x in
2 let f1 = (f0, f0) in
3 let f2 = (f1, f1) in
4 ...
5 fN

▶ But under reasonable assumptions4, the complexity is
quasi-linear.

4In the wild, the depth of types are bounded!

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

31/1

Plan

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

32/1

Do it yourself!

Programming exercise

1. Define the syntax of an explicitly typed version of ML.
2. Turn Inference.algorithm_w into an elaboration targeting

the language you just defined.
3. Are you able to locate the binding site of every type variables

that occur in the elaborated terms?
(Let us name this question “Question 0”.)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

33/1

eML, an explicitly typed ML (Syntax)

We reuse the syntax of System F for abstractions with respect to
types and for type applications:

M ::= x
| λ(x : τ).M
| M M
| Λα.M
| Mτ
| let x : σ = M in M

Notice that, contrary to System F, λ-bound identifiers are assigned a
monomorphic type. As in ML, only let-bound identifiers can be
polymorphic.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

34/1

eML, an explicitly typed ML (Typing rules)

Γ ⊢ x : Γ(x)

Γ, (x : τ1) ⊢ M : τ2

Γ ⊢ λ(x : τ1).M : τ1 → τ2

Γ ⊢ M1 : τ1 → τ2 Γ ⊢ M2 : τ1

Γ ⊢ M1M2 : τ2

Γ ⊢ M1 : σ1 Γ, (x : σ1) ⊢ M2 : σ2

Γ ⊢ let x : σ1 = M1 in M2 : σ2

Γ, α ⊢ M : σ

Γ ⊢ Λα.M : ∀α.σ

Γ ⊢ M : ∀α.σ
Γ ⊢ Mτ : σ[α 7→ τ]

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

35/1

Wait a second!

But this is not the language we define in the previous exercise,
right?

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

36/1

xML, another explicitly typed ML

The language we defined as a target ofW elaboration is:

N ::= Λα.Q
Q ::= xτ

| λ(x : τ).Q
| QQ
| let x : σ = N in Q

How do we relate eML and xML?

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

36/1

xML, another explicitly typed ML

The language we defined as a target ofW elaboration is:

N ::= Λα.Q
Q ::= xτ

| λ(x : τ).Q
| QQ
| let x : σ = N in Q

How do we relate eML and xML?

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

37/1

Normalization of eML typing derivations

Let us write
Γ ⊢ M : σ ⇒ N

and
Γ ⊢ M : τ ⇒ Q

for two judgments that denote the normalization of the typing
derivation ofM as a typing derivation in xML.

More formally, we want the following properties to hold:

Lemma (Normalization preserves well-typedness)
If Γ ⊢ M : σ in eML and Γ ⊢ M : σ ⇒ N then Γ ⊢ N : σ in xML.
(Idem for the monomorphic case.)

Lemma (Well-formed typing derivations normalize)
If Γ ⊢ M : σ in eML then Γ ⊢ M : σ ⇒ N .
(Idem for the monomorphic case.)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

38/1

Do it yourself!

Formalization exercise
Define the rules for the previous two judgments.

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

39/1

Normalization rules

Let us start with
Γ ⊢ M : σ ⇒ N

The syntax ofN forces us to η-expand x:

Norm-Var
Γ(x) = ∀α.τ

Γ ⊢ x : ∀α.τ ⇒ Λα.(xα)

The case for type abstraction is obvious:

Norm-TAbs
Γ, α ⊢ M : σ ⇒ N

Γ ⊢ Λα.M : ∀α.σ ⇒ Λα.N

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

40/1

Normalization rules (continued)

Type applications are reduced during the normalization so that the
resulting termN is normalized with respect to strong ι-reduction:

Norm-TApp
Γ ⊢ Mτ : ∀α.σ ⇒ Λα.N

Γ ⊢ Mτ : σ[α 7→ τ] ⇒ N [α 7→ τ]

To comply with the syntax, the type abstractions coming from the
right-hand-side of let-bindings must be extruded:

Norm-Let
α # σ,N1

Γ ⊢ M1 : σ ⇒ N1 Γ, (x : σ) ⊢ M2 : ∀α.τ ⇒ Λα.Q

Γ ⊢ let x : σ = M1 in M2 : ∀α.τ ⇒ Λα.let x : σ = N1 in Q

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

41/1

Normalization rules (continued)

Finally, the two rules for applications and λ-abstraction are
straightforward since the two languages coincide on these
constructions:

Norm-App
Γ ⊢ M1 : τ1 → τ2 ⇒ Q1 Γ ⊢ M2 : τ1 ⇒ Q2

Γ ⊢ M1M2 : τ2 ⇒ Q1Q2

Norm-Abs
Γ(x : τ) ⊢ M : τ2 ⇒ Q

Γ ⊢ λ(x : τ).M : τ1 → τ2 ⇒ λ(x : τ).Q

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

42/1

Back to Lemmas

Lemma (Well-formed typing derivations normalize)
If Γ ⊢ M : σ in eML then Γ ⊢ M : σ ⇒ N .
(Idem for the monomorphic case.)

Proof.
Easy induction over typing derivations of eML.

Lemma (Normalization preserves well-typedness)
If Γ ⊢ M : σ in eML and Γ ⊢ M : σ ⇒ N then Γ ⊢ N : σ in xML.
(Idem for the monomorphic case.)

Proof.
By induction over typing derivations of eML.
(Details on blackboard.)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

43/1

Two birds in one stone!

Lemma
Type erasure preservation If Γ ⊢ M : σ ⇒ N then the type
erasures ofM andN are equal.

Proof.
Immediate by induction.

Equivalence of two pairs of type systems for ML

▶ For any derivation of eML, there is an equivalent derivations of
xML. (The other direction is obvious.) : We have a typechecker
for explicitly-typed ML!

▶ If we remove the type annotations from the syntax, the proof
can be transported to the (implicitly typed) ML type systems we
have introduced earlier!
(Question 2 is now solved.)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

44/1

And what about “Question 0”?
Remember:

Are you able to locate the binding site of every type variables that
occur in the elaborated terms?

The unification type variables that have not been promoted to
generalized type variables are still floating in the air. This is not really
a problem: these variables can be seen as existentially quantified at
the toplevel.

Yet, a cleaner treatment of these type variables consists in the
introduction of an existential quantification over these (flexible) type
variables at the level of terms:

t ::= . . . | ∃α.t
with a companion typing rule of the form:

Γ ⊢ t : τ [α 7→ τ ′]

Γ ⊢ ∃α.t : τ

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

45/1

An open question : the type soundness of ML

Many proofs are possible

▶ From scratch, by mimicking the proof for System F.
▶ By deducing the type soundness of eML from System F’s.

(See Didier Remy’s course notes, section 4.6.3.)

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

46/1

Plan

yrg@irif.fr

Rich types,
Tractable typing

– Type Inference –

Yann Régis-Gianas
yrg@irif.fr

47/1

To be continued...

yrg@irif.fr

