François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn Towards machine-checked proofs

### **MPRI 2.4**

François Pottier



2017

François Pottier

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn

#### 1 Why mechanize definitions and proofs?

Representing abstract syntax with binders On paper: the nominal representation In a machine: de Bruijn's representation

François Pottier

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn

# Why formalize programming languages?

To obtain precise definitions of programming languages, including:

- dynamic semantics;
- type systems, sometimes known as "static semantics".

To obtain rigorous proofs of soundness for tools such as

- interpreters,
- · compilers,
- type systems ("well-typed programs do not go wrong"),
- type-checkers and type inference engines,
- static analyzers (e.g. abstract interpreters),
- program logics (e.g. Hoare logic, separation logic),
- deductive program provers (e.g. verification condition generators).

### Challenge 1: Scale

#### François Pottier

MPRI 2.4 Towards

machinechecked proofs

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn Hand-written proofs have difficulty scaling up:

- From minimal calculi ( $\lambda$ ,  $\pi$ ) and toy languages (IMP, MiniML) to large real-world languages such as Java, C, JavaScript, ...
- From textbook compilers to multi-pass optimizing compilers producing code for real processors.
- From textbook abstract interpreters to scalable and precise static analyzers such as Astrée.

### Challenge 2: Trust

#### Towards machinechecked proofs

MPBI 2.4

François Pottier

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn Hand-written proofs are seldom trustworthy.

- Authors struggle with huge LaTeX documents.
- Reviewers give up on checking huge but boring proofs.

Proofs written by computer scientists are boring: they read as if the author is programming the reader.

John C. Mitchell

- Proof cases are omitted because they are "obvious" or "analogous to the previous case".
- It is difficult to maintain hand-written proofs as the definitions evolve.

François Pottier

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn Opportunity: machine-assisted proof

Mechanized theorem proving has made great progress.

Landmark examples in mathematics:

- the 4-colour theorem, Haken & Appel (1976), Gonthier & Werner (2005);
- the Feit-Thompson theorem, Gonthier et al. (2013);
- Kepler's conjecture, Hales et al. (2015).

Programming language theory is a good match for proof assistants:

- discrete objects (trees); no reals, no analysis, no topology...
- large definitions; proofs with many similar cases;
- syntactic techniques (induction); few deep mathematical concepts.

#### The POPLmark challenge

Towards machinechecked proofs

MPRI 2.4

François Pottier

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn In 2005, Aydemir et al. challenged the POPL community:

How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?

12 years later, about 20% of the papers at recent POPL conferences come with such an electronic appendix.

#### Proof assistants

checked proofs François Pottier

MPRI 2.4 Towards

machine-

Why mechanize?

Coq in a nutshell

Syntax with binders Nominal de Bruijn An interactive proof assistant offers:

- A formal specification language, in which definitions are written and theorems are stated.
- A set of commands for building proofs, either automatically or interactively.
- Often, an independent, automated proof checker, so the above commands do not have to be trusted.

A Mathematical Assistant satisfying the possibility of independent checking by a small program is said to satisfy the de Bruijn criterion.

Barendregt and Wiedijk,

The Challenge of Computer Mathematics, 2005.

Popular proof assistants include Coq, Agda, HOL4, Isabelle/HOL...

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

#### Why mechanize definitions and proofs?

#### 2 Coq in a nutshell

Representing abstract syntax with binders
 On paper: the nominal representation
 In a machine: de Bruijn's representation

# Computations and functions

Coq offers a pure functional programming language in the style of ML, with recursive functions and pattern-matching.

```
Fixpoint factorial (n: nat) :=
match n with
| 0 => 1
| S p => n * factorial p
end.

Fixpoint concat (A: Type) (xs ys: list A) :=
match xs with
| nil => ys
| x :: xs => x :: concat xs ys
end.
```

MPRI 2.4 Towards

machinechecked proofs François Pottier

Coq in a

de Bruijn

The language is total: all functions terminate. This is enforced by requiring every recursive call to be decreasing w.r.t. the subterm ordering.

#### Mathematical logic

proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn Propositions can be expressed in this language. They have type Prop.

```
Definition divides (a b: N) := exists n: N, b = n * a.
```

```
Theorem factorial_divisors:
    forall n i, 1 <= i <= n -> divides i (factorial n).
Definition prime (p: N) :=
```

```
p > 1 / (forall d, divides d p \rightarrow d = 1 / d = p).
```

```
Theorem Euclid:
    forall n, exists p, p >= n /\ prime p.
```

The standard logical connectives and quantifiers are available.

#### Inductive types

machinechecked proofs Francois

MPRI 2.4 Towards

Pottier

Why mechanize'

Coq in a nutshell

Syntax wit binders Nominal de Bruijn An inductive type is a data type.

It is equipped with a finite number of constructors.

Its inhabitants are generated by (finite, well-typed) applications of the constructors.

```
Inductive nat: Type :=
| 0: nat
| S: nat -> nat.
Inductive list: Type -> Type :=
| nil: forall A, list A
| cons: forall A, A -> list A -> list A.
```

E.g., the inhabitants of nat are 0, S 0, S (S 0), etc.

This is well suited to describe the syntax of a programming language.

## Inductive predicates

proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn An inductive predicate is equipped with a finite number of constructors, and is generated by (finite, well-typed) applications of the constructors.

```
Inductive even: nat -> Prop :=
| even_zero:
    even 0
| even_plus_2:
    forall n, even n -> even (S (S n)).
```

On paper, this is typically written in the form of inference rules:

|           | n is even       |  |
|-----------|-----------------|--|
| 0 is even | S (S n) is even |  |

The inhabitants of the type even n can be thought of as derivation trees whose conclusion is even n.

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

#### Why mechanize definitions and proofs?

Representing abstract syntax with binders
 On paper: the nominal representation
 In a machine: de Bruijn's representation

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn

#### Why mechanize definitions and proofs?

2 Coq in a nutshell

Representing abstract syntax with binders
 On paper: the nominal representation
 In a machine: de Bruijn's representation

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

# Binding and $\alpha$ -equivalence

Most programming languages provide constructs that bind variables, e.g.:

- function abstractions (in terms): λx.t
- local definitions (in terms): let x = t in t
- quantifiers (in types):  $\forall \alpha. \alpha \rightarrow \alpha$

 $\alpha$ -equivalence is a relation that allows renamings of bound variables, e.g.:

 $\lambda x. x + 1 \equiv_{\alpha} \lambda y. y + 1$   $\forall \alpha. \alpha \text{ list} \equiv_{\alpha} \forall \beta. \beta \text{ list}$ 

 $\alpha$ -equivalence can be defined as follows:

 $\lambda x.t \equiv_{\alpha} \lambda y.\binom{x}{y}t \quad \text{if } y \notin fv(\lambda x.t)$ where  $\binom{x}{y}$  swaps all occurrences of x and y

François Pottier

Why mechaniz

Coq in a nutshell

Syntax wit binders Nominal de Bruin

## Implicit $\alpha$ -equivalence

On paper, it is customary to confuse  $\alpha$ -equivalence  $\equiv_{\alpha}$  with equality =. This plays a role, for instance, in the definition of System *F*. This is the traditional rule for type-checking a function application:

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \; e_2 : \tau'}$$

The rule should be written as follows, if  $\alpha$ -equivalence was explicit:

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \quad \Gamma \vdash e_2 : \tau_2 \qquad \tau \equiv_{\alpha} \tau_2}{\Gamma \vdash e_1 \; e_2 : \tau'}$$

In simply-typed  $\lambda$ -calculus, this issue does not arise, as there are no quantifiers in types:  $\alpha$ -equivalence and equality of types coincide.

#### Explicit *a*-equivalence

#### proofs François Pottier

MPRI 2.4 Towards machine-

checked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn In principle, one should distinguish between:

- trees versus equivalence classes of trees;
- equality = versus  $\alpha$ -equivalence  $\equiv_{\alpha}$ .

This sounds easy enough, but leads to subtleties when defining mathematical functions that consume or produce trees... such as:

- program transformations, which produce and consume syntax trees;
- proofs, which produce and consume derivation trees.

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders

Nominal de Bruijn

#### Functions on equivalence classes

To define a function *f* from  $\mathbb{T}/\equiv_{\alpha}$  to  $\mathbb{T}/\equiv_{\alpha}$ , it suffices to first define a relation *F* between  $\mathbb{T}$  and  $\mathbb{T}$ , and to require two conditions:

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal

## Functions on equivalence classes

To define a function *f* from  $\mathbb{T}/\equiv_{\alpha}$  to  $\mathbb{T}/\equiv_{\alpha}$ , it suffices to first define a relation *F* between  $\mathbb{T}$  and  $\mathbb{T}$ , and to require two conditions:

• every tree is  $\alpha$ -equivalent to some tree in the domain of *F*:

 $\forall t \in \mathbb{T} \quad \exists t', u' \in \mathbb{T} \quad t \equiv_{\alpha} t' \wedge t' \ F \ u'$ 

- note: the domain of F need not be  $\mathbb T$
- "without loss of generality, let us assume that x does not occur in ..."

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn

## Functions on equivalence classes

To define a function f from  $\mathbb{T}/\equiv_{\alpha}$  to  $\mathbb{T}/\equiv_{\alpha}$ , it suffices to first define a relation F between  $\mathbb{T}$  and  $\mathbb{T}$ , and to require two conditions:

• every tree is *α*-equivalent to some tree in the domain of *F*:

 $\forall t \in \mathbb{T} \quad \exists t', u' \in \mathbb{T} \quad t \equiv_{\alpha} t' \wedge t' \ F \ u'$ 

- note: the domain of F need not be  $\mathbb{T}$
- "without loss of generality, let us assume that x does not occur in ..."
- *F* is compatible with  $\alpha$ -equivalence:

 $\forall t,t',u,u'\in\mathbb{T}\quad t\ F\ u\wedge t'\ F\ u'\wedge t\equiv_{\alpha}t'\Rightarrow u\equiv_{\alpha}u'$ 

- note: F need not be deterministic (single-valued)
- nondeterminism is fine as long as all choices yield α-eq. results
- "let us pick a name x outside of ..."

#### Free variables

MPRI 2.4 Towards machinechecked proofs

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn The classic definition of the set of the free variables of a  $\lambda$ -term:

 $\begin{aligned} & fv(x) = \{x\} \\ & fv(\lambda x.t) = fv(t) \setminus \{x\} \\ & fv(t_1, t_2) = fv(t_1) \cup fv(t_2) \end{aligned}$ 

A total function from  $\ensuremath{\mathbb{T}}$  to sets of names.

Condition 1 is vacuously satisfied (the relation is defined everywhere).

Condition 2 requires checking the following equality:

 $fv(\lambda x.t) = fv(\lambda y.(_{v}^{x})t)$  where  $y \notin fv(\lambda x.t)$ 

This follows from the fact that fv is equivariant, i.e., commutes with swaps:

 $fv(\pi t) = \pi fv(t)$ 

and from the fact that neither x nor y appear in the set  $fv(\lambda x.t)$ .

Thus, fv gives rise to a total function from  $\mathbb{T}/\equiv_{\alpha}$  to sets of names.

### Capture-avoiding substitution

proofs François Pottier

MPRI 2.4 Towards machine-

checked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

#### The classic definition of capture-avoiding substitution:

 $\begin{array}{ll} x[u/x] = u \\ y[u/x] = y & \text{if } y \neq x \\ (\lambda z.t)[u/x] = \lambda z. t[u/x] & \text{if } z \notin fv(u) \cup \{x\} & -\text{avoid capture!} \\ (t_1 \ t_2)[u/x] = t_1[u/x] \ t_2[u/x] \end{array}$ 

A partial function from  $\mathbb T$  to  $\mathbb T.$ 

Condition 1 holds, as only a finite number of choices for z are forbidden. Condition 2 requires checking:

 $\lambda z. t[u/x] \equiv_{\alpha} \lambda z'. t'[u/x]$  where  $z, z' \notin fv(u) \cup \{x\}$  and  $\lambda z. t \equiv_{\alpha} \lambda z'. t'$ 

which follows, again, from the fact that substitution is equivariant.

Thus, this gives rise to a total function from  $\mathbb{T}/\equiv_{\alpha}$  to  $\mathbb{T}/\equiv_{\alpha}$ .

#### Naïve substitution

#### proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn Naïve substitution does not have the side condition  $z \notin fv(u) \cup \{x\}$ .

It is a total function from  $\mathbb{T}$  to  $\mathbb{T}$ , but fails condition 2, hence does not give rise to a function from  $\mathbb{T}/\equiv_a$  to  $\mathbb{T}/\equiv_a$ .

$$(\lambda y. x + y)[2 \times y/x] = \lambda y. 2 \times y + y - naïve$$
  
 $(\lambda y. x + y)[2 \times y/x] = (\lambda z. x + z)[2 \times y/x] = \lambda z. 2 \times y + z - capture-avoiding$ 

### Representations of syntax

proofs François Pottier

MPRI 2.4 Towards machine-

checked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn How should syntax with binding be represented in a proof assistant? Several representations come to mind:

- equivalence classes of trees the nominal approach (Pitts, 2006);
- de Bruijn notation used in this course (de Bruijn, 1972);
- (parametric) higher-order abstract syntax (Chlipala, 2008);
- the locally nameless representation (Charguéraud, 2009);
- and many more.

One should choose a representation for which the proof assistant has good support.

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

# What about the nominal approach?

The nominal approach is prevalent in informal (paper) proofs.

It is implemented in Nominal Isabelle (Urban, 2008).

• Urban and Narboux (2008) present typical proofs about operational semantics.

It is not well supported in Coq, perhaps for engineering reasons.

• Cohen (2013) shows how to use quotients in Coq (when they exist) and how to construct them (up to certain axioms or hypotheses).

### What about other approaches?

MPRI 2.4 Towards machinechecked proofs

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn

The POPLmark challenge proposes a benchmark problem: a proof of type soundness for  $F_{<:}$ .

15 solutions have been proposed, using 8 different representations in 7 different proof assistants.

No consensus, yet!

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn

#### Why mechanize definitions and proofs?

2 Coq in a nutshell

Representing abstract syntax with binders
 On paper: the nominal representation
 In a machine: de Bruijn's representation

#### François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

## de Bruijn indices



A simple idea: don't use names.

Instead, use pointers from variables back to their binding site.

A second idea: use relative pointers, encoded as natural integers.

- 0 denotes the nearest enclosing λ,
   i.e., the most recently bound variable;
- 1 denotes the next enclosing  $\lambda$ , and so on.

 $\lambda x.x$  is  $\lambda 0$ .

```
\lambda f.\lambda x. f x \text{ is } \lambda \lambda (1 0).
```

# Why is this a good idea?

#### proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn de Bruijn syntax has several strengths:

- it is easily defined;
- it is inductive terms are trees, no quotient is required;
- it is canonical  $\alpha$ -equivalence is just equality.

Its drawbacks are well-known, too:

- terms are more difficult to read a printer may be needed;
- definitions and theorems can seem difficult to write and read

   mostly a matter of habit?

#### $\lambda$ -terms in de Bruijn's notation

proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn The syntax of  $\lambda$ -calculus is simple:

 $t ::= x \mid \lambda t \mid t t$  where  $x \in \mathbb{N}$ 

In Coq:

Inductive term :=
| Var: nat -> term
| Lam: term -> term
| App: term -> term -> term.

#### Suggested exercises

MPRI 2.4 Towards machinechecked proofs

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn Exercise: In OCaml, implement conversions between the nominal representation and de Bruijn's representation, both ways.

Exercise: In OCaml, implement an exhaustive enumeration of the  $\lambda$ -terms of size *s* and with at most *n* free variables. (Let variables have size 0; let  $\lambda$ -abstractions and applications contribute 1.)

Exercise: Use this exhaustive enumeration to test that the above conversions are inverses of each other.

#### Substitution



— Substitution is the éminence grise of the  $\lambda$ -calculus.

MPRI 2.4 Towards

machinechecked proofs François Pottier

de Bruijn

Abadi, Cardelli, Curien, Lévy, Explicit substitutions, 1990.

### Substitutions

Towards machinechecked proofs

MPRI 2.4

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn Let a substitution  $\sigma$  be a total function of variables  $\mathbb{N}$  to terms  $\mathbb{T}$ . It can also be thought of as an infinite sequence  $\sigma(0) \cdot \sigma(1) \cdot \ldots$ Let *id* be the identity substitution: id(x) = x.

• 0 · 1 · 2 · ...

Let +i be the lift substitution: (+i)(x) = x + i.

*i* · (*i* + 1) · (*i* + 2) · …

Let  $t \cdot \sigma$  be the cons substitution that maps 0 to t and x + 1 to  $\sigma(x)$ .

t · σ(0) · σ(1) · …

id can in fact be viewed as sugar for  $0 \cdot (+1)$ .

François Pottier

Why mechaniz

Coq in a nutshell

Syntax wi binders Nominal de Bruijn

## Substitution application and composition

Can we define  $t[\sigma]$ , the application of the substitution  $\sigma$  to the term *t*? It should satisfy the following laws:

 $\begin{aligned} x[\sigma] &= \sigma(x) \\ (\lambda t)[\sigma] &= ? \\ (t_1 \ t_2)[\sigma] &= t_1[\sigma] \ t_2[\sigma] \end{aligned}$ 

François Pottier

Why mechaniz

Coq in a nutshell

Syntax wi binders Nominal de Bruijn

## Substitution application and composition

Can we define  $t[\sigma]$ , the application of the substitution  $\sigma$  to the term *t*? It should satisfy the following laws:

 $\begin{aligned} \mathbf{x}[\sigma] &= \sigma(\mathbf{x}) \\ (\lambda t)[\sigma] &= \lambda(t[?]) \\ (t_1 \ t_2)[\sigma] &= t_1[\sigma] \ t_2[\sigma] \end{aligned}$ 

François Pottier

Why mechaniz

Coq in a nutshell

Syntax wi binders Nominal de Bruijn

## Substitution application and composition

Can we define  $t[\sigma]$ , the application of the substitution  $\sigma$  to the term *t*? It should satisfy the following laws:

 $\begin{aligned} x[\sigma] &= \sigma(x) \\ (\lambda t)[\sigma] &= \lambda(t[0 \cdot ?]) \\ (t_1 t_2)[\sigma] &= t_1[\sigma] t_2[\sigma] \end{aligned}$ 

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

## Substitution application and composition

Can we define  $t[\sigma]$ , the application of the substitution  $\sigma$  to the term *t*? It should satisfy the following laws:

 $\begin{aligned} x[\sigma] &= \sigma(x) \\ (\lambda t)[\sigma] &= \lambda(t[0 \cdot (\sigma; +1)]) \\ (t_1 t_2)[\sigma] &= t_1[\sigma] t_2[\sigma] \end{aligned}$ 

and the composition of two substitutions  $\sigma_1$ ;  $\sigma_2$  should satisfy:

 $(\sigma_1;\sigma_2)(x) = (\sigma_1(x))[\sigma_2]$ 

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

## Substitution application and composition

Can we define  $t[\sigma]$ , the application of the substitution  $\sigma$  to the term *t*? It should satisfy the following laws:

 $\begin{aligned} \mathbf{x}[\sigma] &= \sigma(\mathbf{x})\\ (\lambda t)[\sigma] &= \lambda(t[\Uparrow \sigma])\\ (t_1 \ t_2)[\sigma] &= t_1[\sigma] \ t_2[\sigma] \end{aligned}$ 

where  $\Uparrow \sigma$  stands for 0 · ( $\sigma$ ; +1)

and the composition of two substitutions  $\sigma_1$ ;  $\sigma_2$  should satisfy:

 $(\sigma_1;\sigma_2)(x) = (\sigma_1(x))[\sigma_2]$ 

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn

# Substitution application and composition

Can we define  $t[\sigma]$ , the application of the substitution  $\sigma$  to the term *t*? It should satisfy the following laws:

 $\begin{aligned} \mathbf{x}[\sigma] &= \sigma(\mathbf{x}) \\ (\lambda t)[\sigma] &= \lambda(t[\Uparrow \sigma]) \\ (t_1 \ t_2)[\sigma] &= t_1[\sigma] \ t_2[\sigma] \end{aligned}$ 

where  $\Uparrow \sigma$  stands for 0 · ( $\sigma$ ; +1)

and the composition of two substitutions  $\sigma_1$ ;  $\sigma_2$  should satisfy:

 $(\sigma_1;\sigma_2)(x) = (\sigma_1(x))[\sigma_2]$ 

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t[+i] first ("lift"), then  $\sigma$ ; +i, whence  $\Uparrow \sigma$ , whence  $t[\sigma]$  ("subst").

### de Bruijn algebra

proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn The following equations are sound, that is, valid:

$$\begin{array}{ll} (\lambda t)[\sigma] = \lambda (t[0 \cdot (\sigma; +1)]) & id; \sigma = \sigma \\ (t_1, t_2)[\sigma] = t_1[\sigma] t_2[\sigma] & \sigma; id = \sigma \\ 0[t \cdot \sigma] = t & (\sigma_1; \sigma_2); \sigma_3 = \sigma_1; (\sigma_2; \sigma_3) \\ (+1); (t \cdot \sigma) = \sigma & (t \cdot \sigma_1); \sigma_2 = t[\sigma_2] \cdot (\sigma_1; \sigma_2) \end{array}$$

Furthermore, they are complete (Schäfer et al., 2015).

That is, if an equation based on the following grammar is valid, then it logically follows from the above equations.

| t | ::= | $0 \mid \lambda t \mid t \mid t \mid t[\sigma] \mid T$   |
|---|-----|----------------------------------------------------------|
| σ | ::= | $+1 \mid t \cdot \sigma \mid \sigma; \sigma \mid \Sigma$ |

Schäfer et al. also prove that validity is decidable.

### de Bruijn algebra

#### MPRI 2.4 Towards machinechecked proofs

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn Decidability means that the machine can answer questions for us. Does t[id] = t hold? Yes.

Does  $t[\sigma_1][\sigma_2] = t[\sigma_1; \sigma_2]$  hold? Yes.

And so on, and so forth.

For proofs of the above two equations, see Schäfer et al., Fact 6.

Yet, we do not really care about these proofs – a machine can find them.

## Coq tactics for de Bruijn algebra

proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn

The Coq library Autosubst offers two tactics:

- autosubst proves an equation between terms or substitutions;
- asimpl simplifies a goal in which a term or substitution appears.

#### $\lambda$ -terms with AutoSubst

#### proofs François Pottier

MPRI 2.4 Towards

machinechecked

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn The syntax of  $\lambda$ -calculus can be declared as follows:

AutoSubst defines var as a synonym for nat and {bind term} as a synonym for term.

AutoSubst defines substitution application, composition, etc., for us.

### AutoSubst key notations

| $t \cdot \sigma$        | t.: sigma        | substitution "cons"                          |
|-------------------------|------------------|----------------------------------------------|
| +i                      | ren (+i)         | the substitution $+i$                        |
| id                      | ids              | the identity substitution                    |
| <b>t</b> [σ]            | t.[sigma]        | substitution application                     |
| $\sigma_1$ ; $\sigma_2$ | sigma1 >> sigma2 | substitution composition                     |
| ¶σ                      | up sigma         | taking a substitution under a binder         |
| $n^n \sigma$            | upn n sigma      | taking a substitution under <i>n</i> binders |
| $t.[u \cdot id]$        | t.[u/]           | substituting <i>u</i> for 0 in <i>t</i>      |

T

MPRI 2.4 Towards machine-

checked proofs François Pottier

Nominal de Bruijn

#### "lift" as end-of-scope

Towards machinechecked proofs

MPBI 2.4

François Pottier

Why mechanize

Coq in a nutshell

Syntax wit binders Nominal de Bruijn Suppose we are writing a program in de Bruijn's notation.

Suppose we are in a context where *n* variables exist and we wish to refer to a subterm *t* that has n - 1 free variables. That is, *t* does not know about one of our variables, say *i*, where  $0 \le i < n$ .

We cannot just refer to t, as some indices would be off by one.

Instead, we must use  $t[\uparrow^i(+1)]$ .

Ugly, low-level index arithmetic? No: read it as an end-of-scope mark.

Adopt a nicer notation for it, say "eos *i* in *t*".

There is no syntax for it in the  $\lambda$ -calculus; it is a meta-level notation.

A related, object-level end-of-scope construct, "abdmal", has been studied by Hendriks and van Oostrom (2003).

### Calculi of explicit substitutions

MPRI 2.4 Towards machinechecked proofs

François Pottier

Why mechanize

Coq in a nutshell

Syntax with binders Nominal de Bruijn Similarly, we have viewed substitution application as a meta-level operation. There is no syntax for it in the  $\lambda$ -calculus.

In the  $\lambda\sigma$ -calculus, however, there is syntax for substitutions and substitution application, and a set of small-step reduction rules that explain how substitutions interact with  $\lambda$ -abstractions and applications.

Abadi, Cardelli, Curien, Lévy, Explicit substitutions, 1990.

Curien, Hardin, Lévy, Confluence properties of weak and strong calculi of explicit substitutions, 1992.