
MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

1/89

Compiling away first-class functions:
closure conversion and defunctionalization

MPRI 2.4

François Pottier

2017

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

2/89

Program transformations

Last week, we studied how to interpret functional programs.

This week and in the next weeks, we compile them to lower-level code.

• This leads to more efficient execution. (No interpretive overhead.)
• This helps understand advanced language features, such as

• first-class functions,
• recursion,
• exceptions, effect handlers, etc.

• This helps understand the organization of memory:
• code versus data,
• the stack versus the heap.

• This is an occasion to learn some programming techniques.
• This is an occasion to use operational semantics and do proofs.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

3/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

4/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

5/89

Closure conversion apparatus for existing
closure applicating machines

Innovation in the carbonated beverage
bottling industry is very much dependent on
the ready availability of machinery for
processing new types of containers and/or
closures.

This invention provides substitute capping
heads to apply a threaded closure on a bottle
neck through the utilization of existing
machines which were designed to apply an
aluminum closure on a bottle neck by in situ
formation of the threads in an aluminum shell.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

5/89

Closure conversion apparatus for existing
closure applicating machines

Innovation in the carbonated beverage
bottling industry is very much dependent on
the ready availability of machinery for
processing new types of containers and/or
closures.

This invention provides substitute capping
heads to apply a threaded closure on a bottle
neck through the utilization of existing
machines which were designed to apply an
aluminum closure on a bottle neck by in situ
formation of the threads in an aluminum shell.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

6/89

Motivation

We wish to compile (translate):

• a language with arbitrary first-class functions (i.e., λ-abstractions)

down to:

• a language with closed first-class functions (i.e., “code pointers”)

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

7/89

Motivation

Why might we wish to understand this compilation technique?

• a key step in the compilation of functional programming languages;
• a way of explaining the magic of first-class functions;
• a way of understanding their space and time cost;
• a programming technique in languages without first-class functions.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

8/89

Example 1 / downward funargs

A functional programming language, such as OCaml, naturally allows:

• defining local (nested) functions,
• passing a function as an argument to a function.

This combination of features is sometimes known as “downward funargs”.

let iter f t =
for i = 0 to Array.length t - 1 do f t.(i) done

let sum t =
let s = ref 0 in
let add x = (s := !s + x) in
iter add t;
!s

add refers to the variable s, which is neither global nor local to add.

A nested function can refer to a local variable of an enclosing function.

https://en.wikipedia.org/wiki/Funarg_problem

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

9/89

Example 2 / upward funargs

A functional programming language also allows:

• returning a function out of a function;
• storing a function in a reference, for future use.

A nested function can thus outlive a local variable to which it refers.

This is sometimes called “upward funargs”, although this does not really
mean anything.

First-class functions have unbounded lifetimes;
therefore, their data cannot be stack-allocated.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

10/89

Example 2 / upward funargs

A memory cell that is accessible only via a pair of get and set functions:

let make x =
let cell = ref x in
let get () = !cell
and set x = (cell := x) in
get, set

let () =
let get, set = make 3 in
set (get() + 1)

A typical example of procedural abstraction (Reynolds, 1975),
which is widely popular in object-oriented programming languages.

cell is a local variable in make.
It no longer exists when get and set are called!

How can we transform this code so as to use only closed functions? ...

http://repository.cmu.edu/compsci/1278/

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

11/89

Principles of closure conversion

get and set need access to the value of the local variable cell.
(This value is the address of a heap-allocated reference cell.)

• Therefore, they need one more parameter, an environment,
which somehow gives access to this value;

At a call site, we must be able to supply an environment.

• Therefore, a λ-abstraction must evaluate to a closure,
which gives access to both the code and the environment.

A closure must be heap-allocated, as its lifetime is unbounded.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

12/89

Example 2 / manual closure conversion

The result of closure conversion could be as follows:

let make x =
let cell = ref x in
let get (env, ()) = !(env.cell)
and set (env, x) = (env.cell := x) in
{ code = get; cell = cell }, { code = set; cell = cell }

let () =
let get, set = make 3 in
set.code (set, get.code (get, ()) + 1)

get and set are now closed functions: they have no free variables.

They can be hoisted out of make, if desired...

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

13/89

Example 2 / manual closure conversion

Here is the result of hoisting the closed functions up to the top level:

let get (env, ()) = !(env.cell)
let set (env, x) = (env.cell := x)
let make x =

let cell = ref x in
{ code = get; cell = cell }, { code = set; cell = cell }

let () =
let get, set = make 3 in
set.code (set, get.code (get, ()) + 1)

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

14/89

Example 2 / manual closure conversion

{ code = get; cell = cell } allocates a closure.

A record (i.e., a memory block),

• whose code field contains a closed function (i.e., a code pointer),
• whose other fields (cell) store the values which this function needs.

Here, code pointer and environment form a single memory block:
this is a flat closure.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

15/89

The heap after make 3

code cell

contents

code cell

λenv.λ().
...

λenv.λx.
...

3

get

set

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

16/89

Example 3

What could be the result of closure-converting this code?

let rec map f xs =
match xs with
| [] ->

[]
| x :: xs ->

f x :: map f xs

let scale k xs =
map (fun x -> k * x) xs

Perform selective conversion – do not convert map and scale, which are
closed functions.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

17/89

Example 3

The anonymous function fun x -> k * x becomes a closure allocation.

let rec map f xs =
match xs with
| [] ->

[]
| x :: xs ->

f.code (f, x) :: map f xs

let scale k xs =
map { code = (fun (env, x) -> env.k * x); k = k } xs

The unknown-function call f x is compiled to a closure invocation.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

18/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

19/89

Definition of closure conversion

JxK = x

Jλx .tK = let code = where {x1, . . . , xn} = fv(λx .t)
λ(clo, x). – note: this λ-abstraction is closed!

let xi = πi clo in for each i ∈ {1, . . . ,n}
JtK

in
(code, x1, . . . , xn)

Jt1 t2K = let clo = Jt1K in
let (code, . . .) = clo in
code (clo, Jt2K)

The target calculus must have tuples. We use the following sugar:

let (code, . . .) = clo in t ≡ let code = π0 clo in t
λ(x , y).t ≡ λp.let x = π0 p in let y = π1 p in t

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

20/89

Soundness of closure conversion

We would like to state that this program transformation is sound.

That is, closure conversion preserves the meaning of programs.

We need a semantic preservation statement,

roughly:

If t exhibits a certain behavior,
then JtK exhibits the same behavior.

How can / should this be stated, more precisely?

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

20/89

Soundness of closure conversion

We would like to state that this program transformation is sound.

That is, closure conversion preserves the meaning of programs.

We need a semantic preservation statement,

roughly:

If t exhibits a certain behavior,
then JtK exhibits the same behavior.

How can / should this be stated, more precisely?

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

20/89

Soundness of closure conversion

We would like to state that this program transformation is sound.

That is, closure conversion preserves the meaning of programs.

We need a semantic preservation statement,

roughly:

If t exhibits a certain behavior,
then JtK exhibits the same behavior.

How can / should this be stated, more precisely?

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

21/89

Towards a semantic preservation statement

To write down such a statement, we must choose:

• a semantics for the source calculus;
• a semantics for the target calculus.

Thoughts?

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

22/89

Which semantics for the source calculus?

For the λ-calculus, we have encountered several semantics:

• small-step, substitution-based;
• big-step, substitution-based;
• big-step, environment-based;
• interpreter, with fuel, environment-based.

They are equivalent to one another,
but perhaps one of them is more convenient for this proof?

Let us choose the big-step, environment-based semantics.

It already has explicit notions of environments and closures,
so this choice should make the proof easier.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

22/89

Which semantics for the source calculus?

For the λ-calculus, we have encountered several semantics:

• small-step, substitution-based;
• big-step, substitution-based;
• big-step, environment-based;
• interpreter, with fuel, environment-based.

They are equivalent to one another,
but perhaps one of them is more convenient for this proof?

Let us choose the big-step, environment-based semantics.

It already has explicit notions of environments and closures,
so this choice should make the proof easier.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

23/89

Which semantics for the target calculus?

The target of closure conversion is also a λ-calculus.

We could therefore use the same semantics for it...?

The statement of semantic preservation would then be:

If e ` t ↓cbv c, then JeK ` JtK ↓cbv JcK.

where the same semantics appears in the hypothesis and conclusion.

We could prove such a theorem, but...

That would be philosophically and technically unsatisfactory:

• the identity transformation would satisfy this statement, too!
• this statement does not explain in what way closure conversion is a

useful step in a compiler pipeline. It should lead to a simpler calculus!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

23/89

Which semantics for the target calculus?

The target of closure conversion is also a λ-calculus.

We could therefore use the same semantics for it...?

The statement of semantic preservation would then be:

If e ` t ↓cbv c, then JeK ` JtK ↓cbv JcK.

where the same semantics appears in the hypothesis and conclusion.

We could prove such a theorem, but...

That would be philosophically and technically unsatisfactory:

• the identity transformation would satisfy this statement, too!
• this statement does not explain in what way closure conversion is a

useful step in a compiler pipeline. It should lead to a simpler calculus!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

23/89

Which semantics for the target calculus?

The target of closure conversion is also a λ-calculus.

We could therefore use the same semantics for it...?

The statement of semantic preservation would then be:

If e ` t ↓cbv c, then JeK ` JtK ↓cbv JcK.

where the same semantics appears in the hypothesis and conclusion.

We could prove such a theorem, but...

That would be philosophically and technically unsatisfactory:

• the identity transformation would satisfy this statement, too!
• this statement does not explain in what way closure conversion is a

useful step in a compiler pipeline. It should lead to a simpler calculus!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

24/89

Which semantics for the target calculus?

Something is special about the target calculus,

or about the subset of the target calculus that we exploit.

Every λ-abstraction is closed – that is the point of closure conversion!

We should therefore equip this calculus with a simplified semantics
which does not involve any closures.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

24/89

Which semantics for the target calculus?

Something is special about the target calculus,

or about the subset of the target calculus that we exploit.

Every λ-abstraction is closed – that is the point of closure conversion!

We should therefore equip this calculus with a simplified semantics
which does not involve any closures.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

24/89

Which semantics for the target calculus?

Something is special about the target calculus,

or about the subset of the target calculus that we exploit.

Every λ-abstraction is closed – that is the point of closure conversion!

We should therefore equip this calculus with a simplified semantics
which does not involve any closures.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

25/89

Which semantics for the target calculus?

Recall the standard big-step, environment-based semantics:

EBigCbvVar
e(x) = c

e ` x ↓cbv c

EBigCbvLam
fv(λx .t) ⊆ dom(e)

e ` λx .t ↓cbv 〈λx .t | e〉

EBigCbvApp
e ` t1 ↓cbv 〈λx .u1 | e′〉

e ` t2 ↓cbv c2

e′[x 7→ c2] ` u1 ↓cbv c

e ` t1 t2 ↓cbv c

where c ::= 〈λx .t | e〉 and e ::= [] | e[x 7→ c].

How can this semantics be simplified?

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

26/89

A semantics for the target calculus

No closures! Raw λ-abstractions instead. Think of them as code pointers.

MBigCbvVar
e(x) = c

e ` x �cbv c

MBigcbvLam
fv(λx .t) ⊆ ∅

e ` λx .t �cbv λx .t

MBigcbvApp
e ` t1 �cbv λx .u1

e ` t2 �cbv c2

[][x 7→ c2] ` u1 �cbv c

e ` t1 t2 �cbv c

where c ::= λx .t and e ::= [] | e[x 7→ c].

Such a semantics explains in what way the target calculus is simpler.

Exercise: extend this semantics with “let” constructs, pairs and projections.
The solution is in MetalBigStep.

https://gitlab.inria.fr/fpottier/mpri-2.4-public/tree/master/coq/MetalBigStep.v

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

27/89

Towards a semantic preservation statement

The semantic preservation statement should be, roughly:

If e ` t ↓cbv c, then JeK ` JtK �cbv JcK.

What is missing still for this statement to make sense?

We must define the translation of environments JeK and closures JcK.

An environment is naturally transformed pointwise:

J[]K = []
Je[x 7→ c]K = e[x 7→ JcK]

A closure is represented as... a tuple:

J〈λx .t | e〉K = (λ(clo, x). . . . , e(x1), . . . ,e(xn))
where {x1, . . . , xn} = fv(λx .t)
and x1 < . . . < xn – for this to define a function

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

27/89

Towards a semantic preservation statement

The semantic preservation statement should be, roughly:

If e ` t ↓cbv c, then JeK ` JtK �cbv JcK.

What is missing still for this statement to make sense?

We must define the translation of environments JeK and closures JcK.

An environment is naturally transformed pointwise:

J[]K = []
Je[x 7→ c]K = e[x 7→ JcK]

A closure is represented as... a tuple:

J〈λx .t | e〉K = (λ(clo, x). . . . , e(x1), . . . ,e(xn))
where {x1, . . . , xn} = fv(λx .t)
and x1 < . . . < xn – for this to define a function

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

27/89

Towards a semantic preservation statement

The semantic preservation statement should be, roughly:

If e ` t ↓cbv c, then JeK ` JtK �cbv JcK.

What is missing still for this statement to make sense?

We must define the translation of environments JeK and closures JcK.

An environment is naturally transformed pointwise:

J[]K = []
Je[x 7→ c]K = e[x 7→ JcK]

A closure is represented as...

a tuple:

J〈λx .t | e〉K = (λ(clo, x). . . . , e(x1), . . . ,e(xn))
where {x1, . . . , xn} = fv(λx .t)
and x1 < . . . < xn – for this to define a function

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

27/89

Towards a semantic preservation statement

The semantic preservation statement should be, roughly:

If e ` t ↓cbv c, then JeK ` JtK �cbv JcK.

What is missing still for this statement to make sense?

We must define the translation of environments JeK and closures JcK.

An environment is naturally transformed pointwise:

J[]K = []
Je[x 7→ c]K = e[x 7→ JcK]

A closure is represented as... a tuple:

J〈λx .t | e〉K = (λ(clo, x). . . . , e(x1), . . . ,e(xn))
where {x1, . . . , xn} = fv(λx .t)

and x1 < . . . < xn – for this to define a function

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

27/89

Towards a semantic preservation statement

The semantic preservation statement should be, roughly:

If e ` t ↓cbv c, then JeK ` JtK �cbv JcK.

What is missing still for this statement to make sense?

We must define the translation of environments JeK and closures JcK.

An environment is naturally transformed pointwise:

J[]K = []
Je[x 7→ c]K = e[x 7→ JcK]

A closure is represented as... a tuple:

J〈λx .t | e〉K = (λ(clo, x). . . . , e(x1), . . . ,e(xn))
where {x1, . . . , xn} = fv(λx .t)
and x1 < . . . < xn – for this to define a function

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

28/89

A semantic preservation statement

Semantic preservation is stated as follows:

Lemma (Semantic preservation)
Assume e ` t ↓cbv c.
Then, JeK ` JtK �cbv JcK holds.

Exercise (recommended): write a careful proof of this lemma, on paper.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

29/89

A semantic preservation statement

In Coq, we use de Bruijn style, and prove:

Lemma (Semantic preservation)
Assume e ` t ↓cbv c.
Then, JeK ` JtKn �cbv JcK holds,
where n is the length of the environment e.

Proof.
By induction on the hypothesis.
See ClosureConversion/semantic_preservation. �

Things are easier if the transformation J·K· takes two parameters t and n,
where the free variables of t are supposed to be below n.

Exercise (tricky): define JtKn and prove that if t has free variables below n
then JtKn has free variables below n. See ClosureConversion/fv_cc.

https://gitlab.inria.fr/fpottier/mpri-2.4-public/tree/master/coq/ClosureConversion.v
https://gitlab.inria.fr/fpottier/mpri-2.4-public/tree/master/coq/ClosureConversion.v

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

30/89

Caveats

Are we happy with this semantic preservation statement?

e ` t ↓cbv c implies JeK ` JtK �cbv JcK.

Does it actually mean what we think it means?

What do we think it means? Perhaps this?

The transformed program “computes the same thing”
as the source program.

Or this?

The transformed program “behaves in the same way”
as the source program.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

31/89

Caveat 1: is the translation nontrivial?

The trivial transformation defined by JtK = ()
also satisfies this semantic preservation statement.

We should somehow check that our transformation is nontrivial.

Some concrete observation of program behavior must be preserved:

• If our calculi had primitive integers, we could check that JiK is i,
so a program that computes an integer value
is transformed to a program that computes the same value.

• We could also check that JtK terminates if and only if t terminates.
This brings us to the next slide...

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

31/89

Caveat 1: is the translation nontrivial?

The trivial transformation defined by JtK = ()
also satisfies this semantic preservation statement.

We should somehow check that our transformation is nontrivial.

Some concrete observation of program behavior must be preserved:

• If our calculi had primitive integers, we could check that JiK is i,
so a program that computes an integer value
is transformed to a program that computes the same value.

• We could also check that JtK terminates if and only if t terminates.
This brings us to the next slide...

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

31/89

Caveat 1: is the translation nontrivial?

The trivial transformation defined by JtK = ()
also satisfies this semantic preservation statement.

We should somehow check that our transformation is nontrivial.

Some concrete observation of program behavior must be preserved:

• If our calculi had primitive integers, we could check that JiK is i,
so a program that computes an integer value
is transformed to a program that computes the same value.

• We could also check that JtK terminates if and only if t terminates.
This brings us to the next slide...

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

32/89

Caveat 2: is nontermination preserved?

If t diverges (i.e., does not terminate), then “obviously” JtK diverges too,
since “JtK computes the same thing as t”.

However, we have not proved this fact:
it does not follow from our semantic preservation statement.

A transformation that maps certain divergent programs to ()
would still satisfy this statement!

To prove that nontermination is preserved, we could use:

• a small-step semantics, or
• a co-inductive nontermination judgement e ` t ↑cbv.

See Leroy and Grall (2007).

http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

32/89

Caveat 2: is nontermination preserved?

If t diverges (i.e., does not terminate), then “obviously” JtK diverges too,
since “JtK computes the same thing as t”.

However, we have not proved this fact:
it does not follow from our semantic preservation statement.

A transformation that maps certain divergent programs to ()
would still satisfy this statement!

To prove that nontermination is preserved, we could use:

• a small-step semantics, or
• a co-inductive nontermination judgement e ` t ↑cbv.

See Leroy and Grall (2007).

http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

32/89

Caveat 2: is nontermination preserved?

If t diverges (i.e., does not terminate), then “obviously” JtK diverges too,
since “JtK computes the same thing as t”.

However, we have not proved this fact:
it does not follow from our semantic preservation statement.

A transformation that maps certain divergent programs to ()
would still satisfy this statement!

To prove that nontermination is preserved, we could use:

• a small-step semantics, or
• a co-inductive nontermination judgement e ` t ↑cbv.

See Leroy and Grall (2007).

http://gallium.inria.fr/~xleroy/publi/coindsem-journal.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

33/89

Caveat 3: forward versus backward
preservation

We have proved:

Every behavior of the source program
is also a behavior of the transformed program.

That is,

The behaviors of the source program
form a subset of the behaviors of the transformed program.

So,

A program that prints “hello”
can be transformed to
a program that prints “hello” OR launches a missile.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

33/89

Caveat 3: forward versus backward
preservation

We have proved:

Every behavior of the source program
is also a behavior of the transformed program.

That is,

The behaviors of the source program
form a subset of the behaviors of the transformed program.

So,

A program that prints “hello”
can be transformed to
a program that prints “hello” OR launches a missile.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

33/89

Caveat 3: forward versus backward
preservation

We have proved:

Every behavior of the source program
is also a behavior of the transformed program.

That is,

The behaviors of the source program
form a subset of the behaviors of the transformed program.

So,

A program that prints “hello”
can be transformed to
a program that prints “hello” OR launches a missile.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

34/89

Caveat 3: forward versus backward
preservation

We really need backward preservation:

The behaviors of the source program
form a superset
of the behaviors of the transformed program.

If the target calculus has deterministic semantics,
then the transformed program has exactly one behavior,
so forward and backward preservation coincide.

If the target calculus has nondeterministic semantics,
we must prove backward preservation.

• This can be tricky.
• A semantics can be made artificially deterministic via an oracle.

Hobor, Appel, Zappa Nardelli,
Oracle Semantics for Concurrent Separation Logic, 2008.

https://www.cs.princeton.edu/~appel/papers/concurrent.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

35/89

Caveats – summary

In summary, always question what you have proved.

Even if your proofs are machine-checked,
your definitions and statements can be incorrect or deceiving.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

36/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

37/89

Minimal environments

My pencil-and-paper definition of closure conversion allocates closures
with minimal environments:

Jλx .tK = let code = where {x1, . . . , xn} = fv(λx .t)
λ(clo, x).

let xi = πi clo in for each i ∈ {1, . . . ,n}
JtK

in
(code, x1, . . . , xn)

In contrast, for greater simplicity, my Coq definition in ClosureConversion
allocates closures with full environments.

Full environments lead to larger closures and space leaks, so in practice
are not viable.

https://gitlab.inria.fr/fpottier/mpri-2.4-public/tree/master/coq/ClosureConversion.v

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

38/89

Recursive functions

How should recursive function definitions be transformed?

Jλx .tK = let code = where {x1, . . . , xn} = fv(λx .t)
λ(clo, x).

let xi = πi clo in for each i ∈ {1, . . . ,n}
JtK

in
(code, x1, . . . , xn)

Jµf .λx .tK = ?

Jt1 t2K = let clo = Jt1K in
let (code, . . .) = clo in
code (clo, Jt2K)

The transformation of function calls cannot be modified: the caller does
not (want to) know whether the callee is a recursive function.

In other words, we must maintain a uniform calling convention.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

39/89

Recursive functions

We must arrange for the variable f to be bound to an appropriate value:

Jµf .λx .tK = let code = where {x1, . . . , xn} = fv(µf .λx .t)
λ(clo, x).

let f = clo in
let xi = πi clo in for each i ∈ {1, . . . ,n}
JtK

in
(code, x1, . . . , xn)

The closure clo happens to be such a value.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

40/89

Mutually recursive functions

What about mutually recursive function definitions?

Suppose the source calculus has mutually recursive function definitions:

t ::= . . . | let rec f1 = λx1.t1 and f2 = λx2.t2 in t

Suppose the target calculus has mutually recursive value definitions:

t ::= . . . | let rec f1 = v1 and f2 = v2 in t

Exercise: propose a (deterministic, call-by-value) operational semantics
with support for these constructs. A syntactic contractiveness condition
must be imposed to rule out nonsensical definitions such as let rec x =
x.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

41/89

Mutually recursive functions

It is then easy to define a transformation of recursive functions:

Jlet rec f1 = λx1.t1
and f2 = λx2.t2

in uK = let rec f1 = Jλx1.t1K
and f2 = Jλx2.t2K
in JuK

This transformation is correct, albeit slightly inefficient.

We get two closures, each of which contains
a pointer to itself and
a pointer to the other closure.

Indeed, f1 and f2 can be free in λx1.t1 and λx2.t2.
If so, the tuples Jλx1.t1K and Jλx2.t2K have slots for f1 and f2.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

42/89

Mutually recursive functions

A slightly more efficient transformation is as follows:

Jlet rec f1 = λx1.t1
and f2 = λx2.t2

in uK = let rec f1 = Jµf1.λx1.t1K
and f2 = Jµf2.λx2.t2K
in JuK

We get two closures, each of which points to the other.

The redundant pointer from each closure to itself has been removed.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

43/89

Complexity and cost model

Closure conversion leads to the following cost model:

• Evaluating a variable costs O(1).
• Evaluating a λ-abstraction costs O(n), where n is the number of its

free variables.
• Evaluating an application costs O(1).

n can be considered O(1), as it depends only on the program’s text, not
on the input data.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

44/89

Understanding programs
through closure conversion

People sometimes use first-class function in somewhat mysterious ways.

Closure conversion can help understand what is going on.

Let us look at a little example: difference lists.

This example also illustrates type-preserving closure conversion in OCaml.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

45/89

A fringe computation

Suppose we have a type of trees with integer-labeled leaves:

type tree =
| Leaf of int
| Node of tree * tree

Suppose we wish to construct a tree’s fringe, a sequence of integers:

let rec fringe (t : tree) : int list =
match t with
| Leaf i -> [i]
| Node (t1, t2) -> fringe t1 @ fringe t2

What do you think?

This code is inefficient. It worst-case time complexity is quadratic.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

45/89

A fringe computation

Suppose we have a type of trees with integer-labeled leaves:

type tree =
| Leaf of int
| Node of tree * tree

Suppose we wish to construct a tree’s fringe, a sequence of integers:

let rec fringe (t : tree) : int list =
match t with
| Leaf i -> [i]
| Node (t1, t2) -> fringe t1 @ fringe t2

What do you think?

This code is inefficient. It worst-case time complexity is quadratic.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

46/89

Difference lists

To remedy this, people sometimes use difference lists (Hughes, 1984).

type ’a diff =
’a list -> ’a list

let singleton (x : ’a) : ’a diff =
fun xs -> x :: xs

let concat (xs : ’a diff) (ys : ’a diff) : ’a diff =
fun zs -> xs (ys zs)

The idea is to represent a list xs as a function that maps ys to xs @ ys.

singleton is “cons”, and concat is function composition!

They both have time complexity O(1).

https://wiki.haskell.org/Difference_list
http://www.cs.tufts.edu/~nr/cs257/archive/john-hughes/lists.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

47/89

Difference lists

With difference lists, the fringe computation is as follows:

let rec fringe_ (t : tree) : int diff =
match t with
| Leaf i -> singleton i
| Node (t1, t2) -> concat (fringe_ t1) (fringe_ t2)

let fringe t =
fringe_ t []

Is this code efficient? What is its time complexity?

The application fringe_t t costs O(n),
and the application of its result to the empty list [] costs O(n) as well.

That is somewhat nonobvious, though. Closure conversion to the rescue!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

47/89

Difference lists

With difference lists, the fringe computation is as follows:

let rec fringe_ (t : tree) : int diff =
match t with
| Leaf i -> singleton i
| Node (t1, t2) -> concat (fringe_ t1) (fringe_ t2)

let fringe t =
fringe_ t []

Is this code efficient? What is its time complexity?

The application fringe_t t costs O(n),
and the application of its result to the empty list [] costs O(n) as well.

That is somewhat nonobvious, though. Closure conversion to the rescue!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

48/89

A type of all closures

A type of closures can be defined in OCaml as follows:

type (’a, ’b) closure =
| Clo:

(’a * ’e -> ’b) (* A (closed) function... *)
* ’e (* ...and its environment... *)

-> (’a, ’b) closure (* ...together form a closure. *)

This is an existential type: (α, β) closure ' ∃ε.((α × ε)→ β) × ε.

Here, the closure and its environment form distinct memory blocks;
this is slightly different from what was shown earlier today.

To find out about type-preserving closure conversion,
see Minamide et al. (1996) and my slides (2009).

https://www.cs.cmu.edu/~rwh/papers/closures/popl96.pdf
http://gallium.inria.fr/~fpottier/mpri/cours04.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

49/89

Well-typed closure invocation

Because all closures have the same type, the code that invokes a closure
can be written once and for all, and is polymorphic.

let apply (f : (’a, ’b) closure) (x : ’a) : ’b =
let Clo (code, env) = f in
code (x, env)

env has unknown type, yet the call code (x, env) is definitely safe.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

50/89

Difference lists, closure-converted

Let us manually apply closure conversion to difference lists.

A difference list is a closure:

type ’a diff =
(’a list, ’a list) closure

singleton and concat allocate and return a closure:

let singleton_code =
fun (xs, x) -> x :: xs

let singleton (x : ’a) : ’a diff =
Clo (singleton_code, x)

let concat_code =
fun (zs, (xs, ys)) -> apply xs (apply ys zs)

let concat (xs : ’a diff) (ys : ’a diff) : ’a diff =
Clo (concat_code, (xs, ys))

The closed functions singleton_code and concat_code are hoisted out.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

51/89

Difference lists, closure-converted

The difference-list-based fringe computation, closure-converted:

let rec fringe_ (t : tree) : int diff =
match t with
| Leaf i -> singleton i
| Node (t1, t2) -> concat (fringe_ t1) (fringe_ t2)

let fringe t =
apply (fringe_ t) []

It should be clear that fringe_ t builds a tree of closures,
whose shape is identical to the shape of the tree t.

Then, the call apply _ [] interprets this tree of closures.

Is this efficient?

Each of the two phases costs O(n). Asymptotic complexity is good.

Yet, the first phase, a tree copy, is useless. The constant factor is not great.

Exercise: write fringe so that cost is O(n) and no tree copy is carried out.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

51/89

Difference lists, closure-converted

The difference-list-based fringe computation, closure-converted:

let rec fringe_ (t : tree) : int diff =
match t with
| Leaf i -> singleton i
| Node (t1, t2) -> concat (fringe_ t1) (fringe_ t2)

let fringe t =
apply (fringe_ t) []

It should be clear that fringe_ t builds a tree of closures,
whose shape is identical to the shape of the tree t.

Then, the call apply _ [] interprets this tree of closures.

Is this efficient?

Each of the two phases costs O(n). Asymptotic complexity is good.

Yet, the first phase, a tree copy, is useless. The constant factor is not great.

Exercise: write fringe so that cost is O(n) and no tree copy is carried out.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

52/89

Some history

Closures were used in interpreters in the 1960s and 1970s.

Landin, The Mechanical Evaluation of Expressions, 1964.

Sussman and Steele,
SCHEME: an interpreter for extended lambda-calculus, 1975.

Closure conversion in a compiler (first?) appeared in Rabbit.

Steele, RABBIT: a compiler for SCHEME, 1978.

https://www.cs.cmu.edu/~crary/819-f09/Landin64.pdf
http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-349.pdf
http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AITR-474.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

53/89

Further improvements

Naïve closure conversion can produce inefficient code.

Selective closure conversion applies when the environment would have
zero slots, and avoids building a closure in that case.

Lightweight closure conversion applies when a value that should be stored
in the environment happens to be available at every call site. Then,
instead of being stored, this value becomes an extra argument.

Both ideas involve a modified closure invocation protocol,
therefore require an agreement between callers and callees,
therefore require a control flow analysis:
one must know which closures may be invoked where.

Steckler and Wand, Selective and lightweight closure conversion, 1994.

Cejtin et al., Flow-directed closure conversion for typed languages, 2000.
— actually, defunctionalization

https://dl.acm.org/citation.cfm?doid=174675.178044
http://dx.doi.org/10.1007/3-540-46425-5_4

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

54/89

Further improvements

Applications of (curried) multi-parameter functions
to multiple actual arguments should be identified and optimized.

• e.g., map f xs should not be compiled as (map f) xs,
where (map f) allocates and returns a closure!

This is done in OCaml and in CakeML,
where this transformation is verified.

Owens et al., Verifying Efficient Function Calls in CakeML, 2017.

https://doi.org/10.1145/3110262

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

55/89

Trivia: closure and mutable variables

In ML, F#, Java, ..., closures capture immutable variables only.

In certain “interesting” programming languages, closures can refer to
mutable variables, too. E.g., in JavaScript:

var messages = ["Wow!", "Hi!", "Closures are fun!"];
for (var i = 0; i < messages.length; i++) {

setTimeout(function () {
say(messages[i]);

}, i * 1500);
}

This program, of course, ...

prints undefined three times.

See Orendorff’s blog post for details.

https://hacks.mozilla.org/2015/07/es6-in-depth-let-and-const/

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

55/89

Trivia: closure and mutable variables

In ML, F#, Java, ..., closures capture immutable variables only.

In certain “interesting” programming languages, closures can refer to
mutable variables, too. E.g., in JavaScript:

var messages = ["Wow!", "Hi!", "Closures are fun!"];
for (var i = 0; i < messages.length; i++) {

setTimeout(function () {
say(messages[i]);

}, i * 1500);
}

This program, of course, ... prints undefined three times.

See Orendorff’s blog post for details.

https://hacks.mozilla.org/2015/07/es6-in-depth-let-and-const/

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

56/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

57/89

Activation of TRPV1 by capsaicin

Activation of TRPV1 by capsaicin results in sensory neuronal depolarization, and
can induce local sensitization to activation by heat, acidosis, and endogenous
agonists. Topical exposure to capsaicin leads to the sensations of heat, burning,
stinging, or itching. High concentrations of capsaicin or repeated applications can
produce a persistent local effect on cutaneous nociceptors, which is best described
as defunctionalization and constituted by reduced spontaneous activity and a loss
of responsiveness to a wide range of sensory stimuli.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

58/89

Defunctionalization

Defun◦, like closure conversion, aims to eliminate first-class functions.

Defun◦ differs in the representation of closures:

• instead of a code pointer and an environment,
• use a tag and an environment.

Thus, instead of (closed) first-class functions,
the target language must have algebraic data types.

Functions become data!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

59/89

Definition of defunctionalization

Assume that every λ-abstraction is decorated with a distinct label C.

JxK = x

JλCx .tK = C(x1, . . . , xn) where {x1, . . . , xn} = fv(λx .t)

Jt1 t2K = apply (Jt1K, Jt2K)

Simple, eh?

There remains to define apply.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

60/89

Definition of defunctionalization

The toplevel function apply interprets a closure as a function.

The whole transformed program is placed in the scope of this definition:

let rec apply (this, that) =
match this with
. . .
| C(x1, . . . , xn)→ for each function λCx .t in the source

let x = that in
JtK

. . .

apply must be recursively defined, as JtK can refer to apply.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

61/89

Soundness of defunctionalization

Is defunctionalization sound, that is, semantics-preserving?

Of course it is!

For a (paper) proof in an untyped setting, see Pottier and Gauthier (2006).

http://gallium.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

62/89

Difference lists

Recall difference lists:

type ’a diff =
’a list -> ’a list

let singleton (x : ’a) : ’a diff =
fun xs -> x :: xs

let concat (xs : ’a diff) (ys : ’a diff) : ’a diff =
fun zs -> xs (ys zs)

As an illustration, let us manually defunctionalize this code.

There are two first-class functions of interest in this code.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

63/89

Difference lists, defunctionalized

Thus, we introduce an algebraic data type with two data constructors:

type ’a diff =
| Singleton of ’a
| Concat of ’a diff * ’a diff

let singleton (x : ’a) : ’a diff =
Singleton x

let concat (xs : ’a diff) (ys : ’a diff) : ’a diff =
Concat (xs, ys)

The functions singleton and concat just build a closure.

There remains to define apply.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

64/89

Difference lists, defunctionalized

apply applies a closure this to an argument that.

let rec apply (this : ’a diff) (that : ’a list) : ’a list =
match this with
| Singleton x ->

let xs = that in
x :: xs

| Concat (xs, ys) ->
let zs = that in
apply xs (apply ys zs)

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

65/89

Difference lists, defunctionalized

The fringe computation is the same as in the closure-converted version:

let rec fringe_ (t : tree) : int diff =
match t with
| Leaf i -> singleton i
| Node (t1, t2) -> concat (fringe_ t1) (fringe_ t2)

let fringe t =
apply (fringe_ t) []

The types tree and int diff are isomorphic!

It is clear (again) that fringe_ is just a tree copy.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

66/89

Sets as characteristic functions

Let us use defunctionalization to investigate another slightly mysterious
piece of code, namely sets implemented as functions.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

67/89

Sets as characteristic functions

A set (of integers) can be represented by its characteristic function:

type set =
int -> bool

let empty : set =
fun y -> false

let singleton (x : int) : set =
fun y -> y = x

let union (s1 : set) (s2 : set) : set =
fun y -> s1 y || s2 y

let mem (x : int) (s : set) : bool =
s x

This works. But is it smart... or is it not?

empty, singleton, union have time complexity O(1). What about mem?

Answering requires understanding the structure of the closures that we
build.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

67/89

Sets as characteristic functions

A set (of integers) can be represented by its characteristic function:

type set =
int -> bool

let empty : set =
fun y -> false

let singleton (x : int) : set =
fun y -> y = x

let union (s1 : set) (s2 : set) : set =
fun y -> s1 y || s2 y

let mem (x : int) (s : set) : bool =
s x

This works. But is it smart... or is it not?

empty, singleton, union have time complexity O(1). What about mem?

Answering requires understanding the structure of the closures that we
build.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

67/89

Sets as characteristic functions

A set (of integers) can be represented by its characteristic function:

type set =
int -> bool

let empty : set =
fun y -> false

let singleton (x : int) : set =
fun y -> y = x

let union (s1 : set) (s2 : set) : set =
fun y -> s1 y || s2 y

let mem (x : int) (s : set) : bool =
s x

This works. But is it smart... or is it not?

empty, singleton, union have time complexity O(1). What about mem?

Answering requires understanding the structure of the closures that we
build.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

68/89

Sets as characteristic functions

There are three places where a closure of type set is built:

let empty : set =
fun y -> false

let singleton (x : int) : set =
fun y -> y = x

let union (s1 : set) (s2 : set) : set =
fun y -> s1 y || s2 y

What fields do these closures carry?

• in empty, no fields;
• in singleton, one field of type int corresponding to x;
• in union, two fields of type set corresponding to s1 and s2.

Let us give these three kinds of closures three distinct labels, say E, S, U.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

69/89

Sets as characteristic functions,
defunctionalized

A “set” is really a closure of one of these three kinds.

Through defunctionalization, set becomes an algebraic data type:

type set =
| E
| S of int
| U of set * set

The three constructor functions become:

let empty : set = E
let singleton (x : int) : set = S (x)
let union (s1 : set) (s2 : set) : set = U (s1, s2)

What is this data type?

A data type of trees with leaves E et S and binary nodes U.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

69/89

Sets as characteristic functions,
defunctionalized

A “set” is really a closure of one of these three kinds.

Through defunctionalization, set becomes an algebraic data type:

type set =
| E
| S of int
| U of set * set

The three constructor functions become:

let empty : set = E
let singleton (x : int) : set = S (x)
let union (s1 : set) (s2 : set) : set = U (s1, s2)

What is this data type?

A data type of trees with leaves E et S and binary nodes U.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

70/89

Sets as characteristic functions,
defunctionalized

apply interprets a set as a characteristic function of type int -> bool.

let rec apply (s : set) (y : int) : bool =
match s with
| E -> false
| S (x) -> y = x
| U (s1, s2) -> apply s1 y || apply s2 y

The membership test becomes:

let mem (x : int) (s : set) : bool =
apply s x

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

71/89

Smart?...

Defun◦ helps see that a set is represented as an unbalanced tree.

mem s x traverses all of the tree s in search of x.

mem has time complexity O(n). Inefficient!

Understanding closure conversion and/or defun◦ helps analyze this code.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

72/89

Type-preserving defunctionalization

We have seen earlier that closure conversion can be type-preserving.
This requires existential types in the target calculus.

Can defunctionalization be made type-preserving?

Yes, it can. If the source calculus has polymorphism, this requires
generalized algebraic data types (GADTs) in the target calculus.

To see why, try translating this:

map (fun x -> not x) (map (fun x -> x + 1) xs)

Pottier and Gauthier,
Polymorphic typed defunctionalization and concretization, 2006.

http://gallium.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

73/89

Some history

Defunctionalization is applied by Reynolds to an interpreter.

More about this next week!

Reynolds, Definitional interpreters
for programming languages, 1972 (1998).

Reynolds, Definitional interpreters revisited, 1998.

Defunctionalization is used in some compilers, e.g., MLton.

They use data flow analysis to create multiple specialized apply functions,
which dispatch on fewer cases.

Cejtin, Jagannathan, Weeks,
Flow-directed Closure Conversion for Typed Languages, 2000.

https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010075320153
http://www.mlton.org/
http://dx.doi.org/10.1007/3-540-46425-5_4

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

74/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

75/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

76/89

Compiling functions as objects

On the surface, Scala has functions and objects, but functions are sugar.

The function type T => R is sugar for Function1[T, R].

trait Function1[-T, +R] { // Defined in the base library.
def apply(v: T): R // Any object with an apply method

} // is a "function"!

An anonymous function:

(x: Int) => x + y

is sugar for an object creation expression:

new Function1[Int, Int] {
def apply(x: Int): Int = x + y

}

Functions (w/ free variables) are translated to objects (w/ free variables).

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

77/89

Compiling objects with free variables

This object creation expression has a free variable y:

new Function1[Int, Int] {
def apply(x: Int): Int = x + y

}

It can be viewed as sugar for

new C (y)

where C is a unique name. The class C is defined at the top level:

class C (y: Int) {
def apply(x: Int): Int = x + y

}

Objects (w/ free variables) are translated to parameterized classes.

This is a modular form of defunctionalization.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

78/89

Compiling parameterized classes

A parameterized class:

class C (y: Int) {
def apply(x: Int): Int = x + y

}

is sugar for a class with an explicit field and a constructor:

class C {
var y: Int = _
def this (y: Int) = {

this()
this.y = y

}
def apply(x: Int): Int = x + y

}

Parameterized classes are translated down to ordinary classes.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

79/89

Functions in Scala

Thus, functions in Scala are represented by heap-allocated closures,
with one field per free variable, just as in OCaml.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

80/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

81/89

λ-lifting

First-class functions (with free variables) can also be be compiled down to
a combination of closed (toplevel) functions and partial applications.

This is known as λ-lifting.

Johnsson, Lambda lifting:
transforming programs to recursive equations, 1985.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.4346&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.4346&rep=rep1&type=pdf

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

82/89

λ-lifting

eval evaluates a polynomial cs at a point x.

let eval (cs : int list) (x : int) : int =
let cons (c : int) (a : int -> int) =

let aux x_n = c * x_n + a (x * x_n) in
aux

and null x_n =
0

in foldr cons null cs 1

aux has free variables c, a, x. cons has free variable x.

Step 1: make them parameters.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

83/89

λ-lifting

Every function in the resulting code is closed.

let eval cs x =
let cons x c a =

let aux c a x x_n = c * x_n + a (x * x_n) in
aux c a x

and null x_n =
0

in foldr (cons x) null cs 1

Step 2: hoist every function to the top level.

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

84/89

λ-lifting

We get a group of toplevel functions, also known as supercombinators:

let aux c a x x_n =
c * x_n + a (x * x_n)

let cons x c a =
aux c a x

let null x_n =
0

let eval cs x =
foldr (cons x) null cs 1

This code contains partial applications, though. (Find them!)

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

85/89

λ-lifting

λ-lifting was popular in the 1980s because people were interested in
abstract machines or “graph reduction” systems that dealt with partial
applications directly.

Peyton Jones, The implementation
of functional programming languages, 1987.

Today, these ideas are largely obsolete.

https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

86/89

1 Closure conversion

Motivation and examples

Definition and proof

Extensions, examples, and remarks

2 Defunctionalization

3 Other techniques

From functions to objects

From functions to supercombinators

From functions to SKI combinators

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

87/89

Compiling to SKI combinators

An idea from the 1950s (Curry and Feys, 1958).

The combinators S, K , I are defined as follows:

S f g x = f x (g x)
K x y = y

I x = x

What is special about them?

Every λ-term can be compiled to code
that involves just S, K , I and applications.

No λ-abstractions, no variables!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

87/89

Compiling to SKI combinators

An idea from the 1950s (Curry and Feys, 1958).

The combinators S, K , I are defined as follows:

S f g x = f x (g x)
K x y = y

I x = x

What is special about them?

Every λ-term can be compiled to code
that involves just S, K , I and applications.

No λ-abstractions, no variables!

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

88/89

Compiling to SKI combinators

Apply the following rules, beginning with innermost λ-abstractions:

replace λx .x with I
replace λx .t with K t if x < fv(t)
replace λx .(t1 t2) with S (λx .t1) (λx .t2)

For instance,
(λx .+ x x) 5

→ S (λx .+ x) (λx .x) 5
→ S (S (λx .+) (λx .x)) (λx .x) 5
→ S (S (K +) (λx .x)) (λx .x) 5
→ S (S (K +) I) (λx .x) 5
→ S (S (K +) I) I 5

Recursion can be dealt with by adding the combinator Y .

MPRI 2.4
Compiling
functions

away

François
Pottier

Closure
conversion
Motivation

Formalization

Remarks

Defun◦

Other
Objects

λ-lifting

SKI

89/89

Compiling to SKI combinators

S, K , I can be viewed as the instruction set of an abstract machine.

This idea was used to compile SASL and Miranda (Turner, 1976–79).

There were plans in the 1980s to do this in hardware!

Peyton Jones, The implementation
of functional programming languages, 1987.

Of course, it is much more efficient to compile down to machine code for a
standard (von Neumann) processor, which is highly optimized.

https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/
https://www.microsoft.com/en-us/research/publication/the-implementation-of-functional-programming-languages/

	Closure conversion
	Motivation and examples
	Definition and proof
	Extensions, examples, and remarks

	Defunctionalization
	Other techniques
	From functions to objects
	From functions to supercombinators
	From functions to SKI combinators

