
MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

1/40

Towards machine-checked proofs

MPRI 2.4

François Pottier

2017

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

2/40

1 Why mechanize definitions and proofs?

2 Coq in a nutshell

3 Representing abstract syntax with binders

On paper: the nominal representation

In a machine: de Bruijn’s representation

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

3/40

Why formalize programming languages?

To obtain precise definitions of programming languages, including:

• dynamic semantics;
• type systems, sometimes known as “static semantics”.

To obtain rigorous proofs of soundness for tools such as

• interpreters,
• compilers,
• type systems (“well-typed programs do not go wrong”),
• type-checkers and type inference engines,
• static analyzers (e.g. abstract interpreters),
• program logics (e.g. Hoare logic, separation logic),
• deductive program provers (e.g. verification condition generators).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

4/40

Challenge 1: Scale

Hand-written proofs have difficulty scaling up:

• From minimal calculi (λ, π) and toy languages (IMP, MiniML) to large
real-world languages such as Java, C, JavaScript, ...

• From textbook compilers to multi-pass optimizing compilers producing
code for real processors.

• From textbook abstract interpreters to scalable and precise static
analyzers such as Astrée.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

5/40

Challenge 2: Trust

Hand-written proofs are seldom trustworthy.

• Authors struggle with huge LaTeX documents.
• Reviewers give up on checking huge but boring proofs.

Proofs written by computer scientists are boring:
they read as if the author is programming the reader.

(John C. Mitchell)

• Proof cases are omitted because they are “obvious”
or “analogous to the previous case”.

• It is difficult to maintain hand-written proofs as the definitions evolve.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

6/40

Opportunity: machine-assisted proof

Mechanized theorem proving has made great progress.

Landmark examples in mathematics:

• the 4-colour theorem, Gonthier & Werner (2005);
• the Feit-Thompson theorem, Gonthier et al. (2013);
• Kepler’s conjecture, Hales et al. (2015).

Programming language theory is a good match for theorem provers:

• discrete objects (trees); no reals, no analysis, no topology...
• large definitions; proofs with many similar cases;
• syntactic techniques (induction); few deep mathematical concepts.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

7/40

The POPLmark challenge

In 2005, Aydemir et al. challenged the POPL community:

How close are we to a world where every paper on programming
languages is accompanied by an electronic appendix with
machine-checked proofs?

12 years later, about 20% of the papers at recent POPL conferences come
with such an electronic appendix.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

8/40

Proof assistants

An interactive proof assistant offers:

• A formal specification language,
in which definitions are written and theorems are stated.

• A set of commands for building proofs,
either automatically or interactively.

• Often, an independent, automated proof checker,
so the above commands do not have to be trusted.

Popular proof assistants include Coq, HOL4, Isabelle/HOL.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

9/40

1 Why mechanize definitions and proofs?

2 Coq in a nutshell

3 Representing abstract syntax with binders

On paper: the nominal representation

In a machine: de Bruijn’s representation

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

10/40

Computations and functions

Coq offers a pure functional programming language in the style of ML,
with recursive functions and pattern-matching.

Fixpoint factorial (n: nat) :=
match n with
| O => 1
| S p => n * factorial p
end.

Fixpoint concat (A: Type) (xs ys: list A) :=
match xs with
| nil => ys
| x :: xs => x :: concat xs ys
end.

The language is total: all functions terminate. This is enforced by requiring
every recursive call to be decreasing w.r.t. the subterm ordering.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

11/40

Mathematical logic

Propositions can be expressed in this language. They have type Prop.

Definition divides (a b: N) := exists n: N, b = n * a.

Theorem factorial_divisors:
forall n i, 1 <= i <= n -> divides i (factorial n).

Definition prime (p: N) :=
p > 1 /\ (forall d, divides d p -> d = 1 \/ d = p).

Theorem Euclid:
forall n, exists p, p >= n /\ prime p.

The standard logical connectives and quantifiers are available.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

12/40

Inductive types

An inductive type is a data type.

It is equipped with a finite number of constructors.

Its inhabitants are generated by (finite, well-typed) applications of the
constructors.

Inductive nat: Type :=
| O: nat
| S: nat -> nat.

Inductive list: Type -> Type :=
| nil: forall A, list A
| cons: forall A, A -> list A -> list A.

E.g., the inhabitants of nat are O, S O, S (S O), etc.

This is well suited to describe the syntax of a programming language.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

13/40

Inductive predicates

An inductive predicate is equipped with a finite number of constructors,
and is generated by (finite, well-typed) applications of the constructors.

Inductive even: nat -> Prop :=
| even_zero:

even O
| even_plus_2:

forall n, even n -> even (S (S n)).

On paper, this is typically written in the form of inference rules:

O is even

n is even

S (S n) is even

The inhabitants of the type even n can be thought of as derivation trees
whose conclusion is even n.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

14/40

1 Why mechanize definitions and proofs?

2 Coq in a nutshell

3 Representing abstract syntax with binders

On paper: the nominal representation

In a machine: de Bruijn’s representation

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

15/40

1 Why mechanize definitions and proofs?

2 Coq in a nutshell

3 Representing abstract syntax with binders

On paper: the nominal representation

In a machine: de Bruijn’s representation

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

16/40

Binding and α-equivalence

Most programming languages provide constructs that bind variables, e.g.:

• function abstractions (in terms): λx .t
• local definitions (in terms): let x = t in t
• quantifiers (in types): ∀α.α→ α

α-equivalence is a relation that allows renamings of bound variables, e.g.:

λx . x + 1 ≡α λy . y + 1 ∀α. α list ≡α ∀β. β list

α-equivalence can be defined as follows:

λx .t ≡α λy .(x
y)t if y < fv(λx .t)

where (x
y) swaps all occurrences of x and y

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

17/40

Implicit α-equivalence

On paper, it is customary to confuse α-equivalence ≡α with equality =.

This plays a role, for instance, in the definition of System F .

This is the traditional rule for type-checking a function application:

Γ ` e1 : τ→ τ′ Γ ` e2 : τ

Γ ` e1 e2 : τ′

The rule should be written as follows, if α-equivalence was explicit:

Γ ` e1 : τ→ τ′ Γ ` e2 : τ2 τ ≡α τ2

Γ ` e1 e2 : τ′

In simply-typed λ-calculus, this issue does not arise, as there are no
quantifiers in types: α-equivalence and equality of types coincide.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

18/40

Explicit α-equivalence

In principle, one should distinguish between:

• trees versus equivalence classes of trees;
• equality = versus α-equivalence ≡α.

This sounds easy enough, but leads to subtleties when defining
mathematical functions that consume or produce trees... such as:

• program transformations, which produce and consume syntax trees;
• proofs, which produce and consume derivation trees.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

19/40

Functions on equivalence classes

To define a function f from T/≡α to T/≡α,
it suffices to first define a relation F between T and T,
and to require two conditions:

• every tree is α-equivalent to some tree in the domain of F :

∀t ∈ T ∃t ′,u′ ∈ T t ≡α t ′ ∧ t ′ F u′

– note: the domain of F need not be T
– “without loss of generality, let us assume that x does not occur in ...”

• F is compatible with α-equivalence:

∀t , t ′,u,u′ ∈ T t F u ∧ t ′ F u′ ∧ t ≡α t ′ ⇒ u ≡α u′

– note: F need not be deterministic (single-valued)
– nondeterminism is fine as long as all choices yield α-eq. results
– “let us pick a name x outside of ...”

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

19/40

Functions on equivalence classes

To define a function f from T/≡α to T/≡α,
it suffices to first define a relation F between T and T,
and to require two conditions:

• every tree is α-equivalent to some tree in the domain of F :

∀t ∈ T ∃t ′,u′ ∈ T t ≡α t ′ ∧ t ′ F u′

– note: the domain of F need not be T
– “without loss of generality, let us assume that x does not occur in ...”

• F is compatible with α-equivalence:

∀t , t ′,u,u′ ∈ T t F u ∧ t ′ F u′ ∧ t ≡α t ′ ⇒ u ≡α u′

– note: F need not be deterministic (single-valued)
– nondeterminism is fine as long as all choices yield α-eq. results
– “let us pick a name x outside of ...”

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

19/40

Functions on equivalence classes

To define a function f from T/≡α to T/≡α,
it suffices to first define a relation F between T and T,
and to require two conditions:

• every tree is α-equivalent to some tree in the domain of F :

∀t ∈ T ∃t ′,u′ ∈ T t ≡α t ′ ∧ t ′ F u′

– note: the domain of F need not be T
– “without loss of generality, let us assume that x does not occur in ...”

• F is compatible with α-equivalence:

∀t , t ′,u,u′ ∈ T t F u ∧ t ′ F u′ ∧ t ≡α t ′ ⇒ u ≡α u′

– note: F need not be deterministic (single-valued)
– nondeterminism is fine as long as all choices yield α-eq. results
– “let us pick a name x outside of ...”

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

20/40

Free variables

The classic definition of the set of the free variables of a λ-term:

fv(x) = {x}
fv(λx .t) = fv(t) \ {x} – no requirement on x
fv(t1 t2) = fv(t1) ∪ fv(t2)

A total function from T to sets of names.

Condition 1 is vacuously satisfied (the relation is defined everywhere).

Condition 2 requires checking the following equality:

fv(λx .t) = fv(λy .(x
y)t) where y < fv(λx .t)

This follows from the fact that fv is equivariant, i.e., commutes with swaps:

fv(π t) = π fv(t)

and from the fact that neither x nor y appear in the set fv(λx .t).

Thus, fv gives rise to a total function from T/≡α to sets of names.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

21/40

Capture-avoiding substitution

The classic definition of capture-avoiding substitution:

x[u/x] = u
y[u/x] = y if y , x

(λz.t)[u/x] = λz. t [u/x] if z < fv(u) ∪ {x} – avoid capture!
(t1 t2)[u/x] = t1[u/x] t2[u/x]

A partial function from T to T.

Condition 1 holds, as only a finite number of choices for z are forbidden.

Condition 2 requires checking:

λz. t [u/x] ≡α λz′. t ′[u/x] where z, z′ < fv(u) ∪ {x} and λz.t ≡α λz′.t ′

which follows, again, from the fact that substitution is equivariant.

Thus, this gives rise to a total function from T/≡α to T/≡α.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

22/40

Naïve substitution

Naïve substitution does not have the side condition z < fv(u) ∪ {x}.

It is a total function from T to T,
but fails condition 2,
hence does not give rise to a function from T/≡α to T/≡α.

(λy . x + y)[2 × y/x] = λy .2 × y + y – naïve

(λy . x + y)[2 × y/x] =
(λz. x + z)[2 × y/x] = λz.2 × y + z – capture-avoiding

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

23/40

Representations of syntax

How should syntax with binding be represented in a proof assistant?

Several representations come to mind:

• equivalence classes of trees – the nominal approach (Pitts, 2006);
• de Bruijn notation – used in this course (de Bruijn, 1972);
• (parametric) higher-order abstract syntax (Chlipala, 2008);
• the locally nameless representation (Charguéraud, 2009);
• and many more.

One should choose a representation for which the proof assistant has
good support.

https://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf
https://www.win.tue.nl/automath/archive/pdf/aut029.pdf
http://adam.chlipala.net/papers/PhoasICFP08/
https://www.chargueraud.org/research/2009/ln/main.pdf

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

24/40

What about the nominal approach?

The nominal approach is prevalent in informal (paper) proofs.

It is implemented in Nominal Isabelle (Urban, 2008).

• Urban and Narboux (2008) present typical proofs
about operational semantics.

It is not well supported in Coq, perhaps for engineering reasons.

• Cohen (2013) shows how to use quotients in Coq (when they exist)
and how to construct them (up to certain axioms or hypotheses).

https://nms.kcl.ac.uk/christian.urban/Publications/nom-tech.pdf
https://nms.kcl.ac.uk/christian.urban/Nominal/manual/SOS.pdf
http://perso.crans.org/cohen/papers/quotients.pdf

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

25/40

What about other approaches?

The POPLmark challenge proposes a benchmark problem:
a proof of type soundness for F<:.

15 solutions have been proposed, using 8 different representations
in 7 different proof assistants.

No consensus, yet!

https://www.seas.upenn.edu/~plclub/poplmark/

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

26/40

1 Why mechanize definitions and proofs?

2 Coq in a nutshell

3 Representing abstract syntax with binders

On paper: the nominal representation

In a machine: de Bruijn’s representation

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

27/40

de Bruijn indices

A simple idea: don’t use names.

Instead, use pointers from variables back to their binding site.

A second idea: use relative pointers, encoded as natural integers.

• 0 denotes the nearest enclosing λ,
i.e., the most recently bound variable;

• 1 denotes the next enclosing λ, and so on.

λx .x is λ0.

λf .λx . f x is λλ(1 0).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

28/40

Why is this a good idea?

de Bruijn syntax has several strengths:

• it is easily defined;
• it is inductive – terms are trees, no quotient is required;
• it is canonical – α-equivalence is just equality.

Its drawbacks are well-known, too:

• terms are more difficult to read – a printer may be needed;
• definitions and theorems can seem difficult to write and read

– mostly a matter of habit?

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

29/40

λ-terms in de Bruijn’s notation

The syntax of λ-calculus is simple:

t ::= x | λt | t t where x ∈N

In Coq:

Inductive term :=
| Var: nat -> term
| Lam: term -> term
| App: term -> term -> term.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

30/40

Suggested exercises

Exercise: In OCaml, implement conversions between the nominal
representation and de Bruijn’s representation, both ways.

Exercise: In OCaml, implement an exhaustive enumeration of the λ-terms
of size s and with at most n free variables. (Let variables have size 0; let
λ-abstractions and applications contribute 1.)

Exercise: Use this exhaustive enumeration to test that the above
conversions are inverses of each other.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

31/40

Substitution

— Substitution is the éminence grise of the λ-calculus.

Abadi, Cardelli, Curien, Lévy, Explicit substitutions, 1990.

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-54.pdf

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

32/40

Substitutions

Let a substitution σ be a total function of variablesN to terms T.

It can also be thought of as an infinite sequence σ(0) · σ(1) · . . .

Let id be the identity substitution: id(x) = x.

• 0 · 1 · 2 · . . .

Let +i be the lift substitution: (+i)(x) = x + i.

• i · (i + 1) · (i + 2) · . . .

Let t · σ be the cons substitution that maps 0 to t and x + 1 to σ(x).

• t · σ(0) · σ(1) · . . .

id can in fact be viewed as sugar for 0 · (+1).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

33/40

Substitution application and composition

Can we define t [σ], the application of the substitution σ to the term t?

It should satisfy the following laws:

x[σ] = σ(x)
(λt)[σ] = ?

where ⇑ σ stands for 0 · (σ ; +1)

(t1 t2)[σ] = t1[σ] t2[σ]

and the composition of two substitutions σ1 ; σ2 should satisfy:

(σ1 ; σ2)(x) = (σ1(x))[σ2]

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t [+i] first (“lift”),
then σ ; +i, whence ⇑ σ, whence t [σ] (“subst”).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

33/40

Substitution application and composition

Can we define t [σ], the application of the substitution σ to the term t?

It should satisfy the following laws:

x[σ] = σ(x)
(λt)[σ] = λ(t [?])

where ⇑ σ stands for 0 · (σ ; +1)

(t1 t2)[σ] = t1[σ] t2[σ]

and the composition of two substitutions σ1 ; σ2 should satisfy:

(σ1 ; σ2)(x) = (σ1(x))[σ2]

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t [+i] first (“lift”),
then σ ; +i, whence ⇑ σ, whence t [σ] (“subst”).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

33/40

Substitution application and composition

Can we define t [σ], the application of the substitution σ to the term t?

It should satisfy the following laws:

x[σ] = σ(x)
(λt)[σ] = λ(t [0 · ?])

where ⇑ σ stands for 0 · (σ ; +1)

(t1 t2)[σ] = t1[σ] t2[σ]

and the composition of two substitutions σ1 ; σ2 should satisfy:

(σ1 ; σ2)(x) = (σ1(x))[σ2]

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t [+i] first (“lift”),
then σ ; +i, whence ⇑ σ, whence t [σ] (“subst”).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

33/40

Substitution application and composition

Can we define t [σ], the application of the substitution σ to the term t?

It should satisfy the following laws:

x[σ] = σ(x)
(λt)[σ] = λ(t [0 · (σ ; +1)])

where ⇑ σ stands for 0 · (σ ; +1)

(t1 t2)[σ] = t1[σ] t2[σ]

and the composition of two substitutions σ1 ; σ2 should satisfy:

(σ1 ; σ2)(x) = (σ1(x))[σ2]

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t [+i] first (“lift”),
then σ ; +i, whence ⇑ σ, whence t [σ] (“subst”).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

33/40

Substitution application and composition

Can we define t [σ], the application of the substitution σ to the term t?

It should satisfy the following laws:

x[σ] = σ(x)
(λt)[σ] = λ(t [⇑ σ]) where ⇑ σ stands for 0 · (σ ; +1)

(t1 t2)[σ] = t1[σ] t2[σ]

and the composition of two substitutions σ1 ; σ2 should satisfy:

(σ1 ; σ2)(x) = (σ1(x))[σ2]

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t [+i] first (“lift”),
then σ ; +i, whence ⇑ σ, whence t [σ] (“subst”).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

33/40

Substitution application and composition

Can we define t [σ], the application of the substitution σ to the term t?

It should satisfy the following laws:

x[σ] = σ(x)
(λt)[σ] = λ(t [⇑ σ]) where ⇑ σ stands for 0 · (σ ; +1)

(t1 t2)[σ] = t1[σ] t2[σ]

and the composition of two substitutions σ1 ; σ2 should satisfy:

(σ1 ; σ2)(x) = (σ1(x))[σ2]

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining t [+i] first (“lift”),
then σ ; +i, whence ⇑ σ, whence t [σ] (“subst”).

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

34/40

de Bruijn algebra

The following equations are sound, that is, valid:

(λt)[σ] = λ(t [0 · (σ ; +1)]) id ; σ = σ
(t1 t2)[σ] = t1[σ] t2[σ] σ ; id = σ

0[t · σ] = t (σ1 ; σ2) ; σ3 = σ1 ; (σ2 ; σ3)
(+1) ; (t · σ) = σ (t · σ1) ; σ2 = t [σ2] · (σ1 ; σ2)

Furthermore, they are complete (Schäfer et al., 2015).

That is, if an equation based on the following grammar is valid, then it
logically follows from the above equations.

t ::= 0 | λt | t t | t [σ] | T
σ ::= +1 | t · σ | σ ; σ | Σ

Schäfer et al. also prove that validity is decidable.

https://www.ps.uni-saarland.de/Publications/documents/SchaeferEtAl_2015_Completeness.pdf

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

35/40

de Bruijn algebra

Decidability means that the machine can answer questions for us.

Does t [id] = t hold? Yes.

Does t [σ1][σ2] = t [σ1 ; σ2] hold? Yes.

And so on, and so forth.

For proofs of the above two equations, see Schäfer et al., Fact 6.

Yet, we do not really care about these proofs – a machine can find them.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

36/40

Coq tactics for de Bruijn algebra

The Coq library Autosubst offers two tactics:

• autosubst proves an equation between terms or substitutions;
• asimpl simplifies a goal in which a term or substitution appears.

https://www.ps.uni-saarland.de/autosubst/

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

37/40

λ-terms with AutoSubst

The syntax of λ-calculus can be declared as follows:

Inductive term :=
| Var: var -> term
| Lam: {bind term} -> term
| App: term -> term -> term.

AutoSubst defines var as a synonym for nat
and {bind term} as a synonym for term.

AutoSubst defines substitution application, composition, etc., for us.

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

38/40

AutoSubst key notations

t · σ t .: sigma substitution “cons”

+i ren (+i) the substitution +i

id ids the identity substitution

t [σ] t.[sigma] substitution application

σ1 ; σ2 sigma1 >> sigma2 substitution composition

⇑ σ up sigma taking a substitution under a binder

⇑
n σ upn n sigma taking a substitution under n binders

t .[u · id] t.[u/] substituting u for 0 in t

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

39/40

“lift” as end-of-scope

Suppose we are writing a program in de Bruijn’s notation.

Suppose we are in a context where n variables exist
and we wish to refer to a subterm t that has n − 1 free variables.
That is, t does not know about one of our variables, say i, where 0 ≤ i < n.

We cannot just refer to t , as some indices would be off by one.

Instead, we must use t [⇑i (+1)].

Ugly, low-level index arithmetic? No: read it as an end-of-scope mark.

Adopt a nicer notation for it, say “eos i in t”.

There is no syntax for it in the λ-calculus; it is a meta-level notation.

A related, object-level end-of-scope construct, “abdmal”,
has been studied by Hendriks and van Oostrom (2003).

https://doi.org/10.1007/978-3-540-45085-6_11

MPRI 2.4
Towards
machine-
checked
proofs

François
Pottier

Why
mechanize?

Coq in a
nutshell

Syntax with
binders
Nominal

de Bruijn

40/40

Calculi of explicit substitutions

Similarly, we have viewed substitution application as a meta-level
operation. There is no syntax for it in the λ-calculus.

In the λσ-calculus, however, there is syntax for substitutions and
substitution application, and a set of small-step reduction rules that explain
how substitutions interact with λ-abstractions and applications.

Abadi, Cardelli, Curien, Lévy, Explicit substitutions, 1990.

Curien, Hardin, Lévy, Confluence properties
of weak and strong calculi of explicit substitutions, 1992.

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-54.pdf
https://hal.inria.fr/inria-00077189/
https://hal.inria.fr/inria-00077189/

	Why mechanize definitions and proofs?
	Coq in a nutshell
	Representing abstract syntax with binders
	On paper: the nominal representation
	In a machine: de Bruijn's representation

