François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Towards machine-checked proofs

MPRI 2.4

François Pottier

2017

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

1 [Why mechanize definitions and proofs?](#page-1-0)

2 [Coq in a nutshell](#page-8-0)

³ [Representing abstract syntax with binders](#page-13-0) [On paper: the nominal representation](#page-14-0) [In a machine: de Bruijn's representation](#page-27-0)

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Why formalize programming languages?

To obtain precise definitions of programming languages, including:

- dynamic semantics;
- type systems, sometimes known as "static semantics".

To obtain rigorous proofs of soundness for tools such as

- interpreters,
- compilers,
- type systems ("well-typed programs do not go wrong"),
- type-checkers and type inference engines,
- static analyzers (e.g. abstract interpreters),
- program logics (e.g. Hoare logic, separation logic),
- deductive program provers (e.g. verification condition generators).

Challenge 1: Scale

François Pottier

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Hand-written proofs have difficulty scaling up:

- From minimal calculi (λ, π) and toy languages (IMP, MiniML) to large real-world languages such as Java, C, JavaScript, ...
- From textbook compilers to multi-pass optimizing compilers producing code for real processors.
- From textbook abstract interpreters to scalable and precise static analyzers such as Astrée.

Challenge 2: Trust

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Hand-written proofs are seldom trustworthy.

- Authors struggle with huge LaTeX documents.
- Reviewers give up on checking huge but boring proofs.

Proofs written by computer scientists are boring: they read as if the author is programming the reader. (John C. Mitchell)

- Proof cases are omitted because they are "obvious" or "analogous to the previous case".
- It is difficult to maintain hand-written proofs as the definitions evolve.

Francois Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Opportunity: machine-assisted proof

Mechanized theorem proving has made great progress.

Landmark examples in mathematics:

- the 4-colour theorem, Gonthier & Werner (2005);
- the Feit-Thompson theorem, Gonthier et al. (2013);
- Kepler's conjecture, Hales et al. (2015).

Programming language theory is a good match for theorem provers:

- discrete objects (trees); no reals, no analysis, no topology...
- large definitions; proofs with many similar cases;
- syntactic techniques (induction); few deep mathematical concepts.

The POPLmark challenge

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

In 2005, Aydemir et al. challenged the POPL community:

How close are we to a world where every paper on programming languages is accompanied by an electronic appendix with machine-checked proofs?

12 years later, about 20% of the papers at recent POPL conferences come with such an electronic appendix.

Proof assistants

checked proofs François Pottier

[MPRI 2.4](#page-0-0) Towards machine-

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

An interactive proof assistant offers:

- A formal specification language, in which definitions are written and theorems are stated.
- A set of commands for building proofs, either automatically or interactively.
- Often, an independent, automated proof checker, so the above commands do not have to be trusted.

Popular proof assistants include Coq, HOL4, Isabelle/HOL.

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

1 [Why mechanize definitions and proofs?](#page-1-0)

2 [Coq in a nutshell](#page-8-0)

³ [Representing abstract syntax with binders](#page-13-0) [On paper: the nominal representation](#page-14-0) [In a machine: de Bruijn's representation](#page-27-0) Computations and functions

[MPRI 2.4](#page-0-0) Towards machinechecked proofs François **Pottier** Why [mechanize?](#page-1-0) [Coq in a](#page-8-0) nutshell [Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Coq offers a pure functional programming language in the style of ML, with recursive functions and pattern-matching.

```
Fixpoint factorial (n: nat) :=
  match n with
  | 0 \implies 1| S p \Rightarrow n * factorial p
  end.
Fixpoint concat (A: Type) (xs ys: list A) :=
  match xs with
  | nil \Rightarrow ys
  \vert x :: xs => x :: concat xs ys
  end.
```
The language is total: all functions terminate. This is enforced by requiring every recursive call to be decreasing w.r.t. the subterm ordering.

Mathematical logic

proofs François **Pottier**

[MPRI 2.4](#page-0-0) **Towards** machinechecked

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Propositions can be expressed in this language. They have type **Prop**.

```
Definition divides (a b: N) := exists n: N, b = n * a.
```

```
Theorem factorial_divisors:
  forall n i, 1 \le i \le n \implies divides i (factorial n).
```

```
Definition prime (p: N) :=
  p > 1 / \backslash (forall d, divides d p \rightarrow d = 1 / d = p).
```

```
Theorem Euclid:
  forall n, exists p, p \ge n \land prime p.
```
The standard logical connectives and quantifiers are available.

Inductive types

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

An inductive type is a data type.

It is equipped with a finite number of constructors.

Its inhabitants are generated by (finite, well-typed) applications of the constructors.

```
Inductive nat: Type :=
| O: nat
| S: nat -> nat.
Inductive list: Type -> Type :=
| nil: forall A, list A
 | cons: forall A, A -> list A -> list A.
```
E.g., the inhabitants of **nat** are O, S O, S (S O), etc.

This is well suited to describe the syntax of a programming language.

Inductive predicates

François **Pottier**

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

An inductive predicate is equipped with a finite number of constructors, and is generated by (finite, well-typed) applications of the constructors.

```
Inductive even: nat -> Prop :=
  | even_zero:
    even O
  | even_plus_2:
    forall n, even n \rightarrow even (S (S n)).
```
On paper, this is typically written in the form of inference rules:

The inhabitants of the type even n can be thought of as derivation trees whose conclusion is even n.

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) binders [Nominal](#page-14-0) [de Bruijn](#page-27-0)

1 [Why mechanize definitions and proofs?](#page-1-0)

³ [Representing abstract syntax with binders](#page-13-0) [On paper: the nominal representation](#page-14-0)

[In a machine: de Bruijn's representation](#page-27-0)

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

1 [Why mechanize definitions and proofs?](#page-1-0)

³ [Representing abstract syntax with binders](#page-13-0) [On paper: the nominal representation](#page-14-0)

[In a machine: de Bruijn's representation](#page-27-0)

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

Binding and α -equivalence

Most programming languages provide constructs that bind variables, e.g.:

- function abstractions (in terms): $\lambda x.t$
- local definitions (in terms): let $x = t$ in t
- quantifiers (in types): $\forall \alpha . \alpha \rightarrow \alpha$

 α -equivalence is a relation that allows renamings of bound variables, e.g.:

 $\lambda x. x + 1 \equiv_{\alpha} \lambda y. y + 1$ $\forall \alpha. \alpha$ list $\equiv_{\alpha} \forall \beta. \beta$ list

 α -equivalence can be defined as follows:

 $\lambda x. t \equiv_{\alpha} \lambda y. {x \choose y} t$ if $y \notin f v(\lambda x. t)$ where $\binom{x}{y}$ swaps all occurrences of x and y

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

Implicit α -equivalence

On paper, it is customary to confuse α -equivalence \equiv_{α} with equality $=$. This plays a role, for instance, in the definition of System F. This is the traditional rule for type-checking a function application:

$$
\frac{\Gamma \vdash e_1 : \tau \to \tau'}{\Gamma \vdash e_1 \ e_2 : \tau'}
$$

The rule should be written as follows, if α -equivalence was explicit:

$$
\cfrac{\Gamma \vdash e_1 : \tau \to \tau'}{\Gamma \vdash e_1 \cdot e_2 : \tau_2 \qquad \tau \equiv_\alpha \tau_2}{\Gamma \vdash e_1 \cdot e_2 : \tau'}
$$

In simply-typed λ -calculus, this issue does not arise, as there are no quantifiers in types: α -equivalence and equality of types coincide.

Explicit α -equivalence

proofs **Francois** Pottier

[MPRI 2.4](#page-0-0) Towards machinechecked

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0) In principle, one should distinguish between:

- trees versus equivalence classes of trees:
- equality = versus α -equivalence \equiv_{α} .

This sounds easy enough, but leads to subtleties when defining mathematical functions that consume or produce trees... such as:

- program transformations, which produce and consume syntax trees;
- proofs, which produce and consume derivation trees.

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

Functions on equivalence classes

To define a function f from $\mathbb{T}/\equiv_{\alpha}$ to $\mathbb{T}/\equiv_{\alpha}$, it suffices to first define a relation F between T and T , and to require two conditions:

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

Functions on equivalence classes

To define a function f from $\mathbb{T}/\equiv_{\alpha}$ to $\mathbb{T}/\equiv_{\alpha}$, it suffices to first define a relation F between T and T , and to require two conditions:

• every tree is α -equivalent to some tree in the domain of F :

 $\forall t \in \mathbb{T} \quad \exists t', u' \in \mathbb{T} \quad t \equiv_{\alpha} t' \wedge t' \in u'$

- note: the domain of F need not be T
- "without loss of generality, let us assume that x does not occur in ..."

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

Functions on equivalence classes

To define a function f from $\mathbb{T}/\equiv_{\alpha}$ to $\mathbb{T}/\equiv_{\alpha}$, it suffices to first define a relation F between T and T , and to require two conditions:

• every tree is α -equivalent to some tree in the domain of F :

 $\forall t \in \mathbb{T} \quad \exists t', u' \in \mathbb{T} \quad t \equiv_{\alpha} t' \wedge t' \in u'$

- $-$ note: the domain of F need not be T
- "without loss of generality, let us assume that x does not occur in ..."
- F is compatible with α -equivalence:

 $\forall t, t', u, u' \in \mathbb{T} \quad t \in u \wedge t' \in u' \wedge t \equiv_{\alpha} t' \Rightarrow u \equiv_{\alpha} u'$

- note: F need not be deterministic (single-valued)
- nondeterminism is fine as long as all choices yield α -eq. results
- "let us pick a name x outside of ..."

Free variables

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0) The classic definition of the set of the free variables of a λ -term:

 $fV(x) = \{x\}$ $f_V(\lambda x.t) = f_V(t) \setminus \{x\}$ – no requirement on x $f_V(t_1, t_2) = f_V(t_1) \cup f_V(t_2)$

A total function from T to sets of names.

Condition 1 is vacuously satisfied (the relation is defined everywhere).

Condition 2 requires checking the following equality:

 $f v(\lambda x.t) = f v(\lambda y.({x \atop y})t)$ where $y \notin f v(\lambda x.t)$

This follows from the fact that fv is equivariant, i.e., commutes with swaps:

 $f\nu(\pi t) = \pi f\nu(t)$

and from the fact that neither x nor y appear in the set $f_V(\lambda x.t)$.

Thus, fv gives rise to a total function from $\mathbb{T}/\equiv_{\alpha}$ to sets of names.

Capture-avoiding substitution

proofs François Pottier

[MPRI 2.4](#page-0-0) Towards machinechecked

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0) The classic definition of capture-avoiding substitution:

 $x[u/x] = u$ $y[u/x] = y$ if $y \neq x$ $(\lambda z.t)[u/x] = \lambda z.t[u/x]$ if $z \notin fv(u) \cup \{x\}$ – avoid capture! $(t_1 t_2)[u/x] = t_1[u/x] t_2[u/x]$

A partial function from T to T .

Condition 1 holds, as only a finite number of choices for z are forbidden. Condition 2 requires checking:

 $\lambda z. t[u/x] \equiv_{\alpha} \lambda z'. t'[u/x]$ where $z, z' \notin f(v) \cup \{x\}$ and $\lambda z. t \equiv_{\alpha} \lambda z'. t'$

which follows, again, from the fact that substitution is equivariant.

Thus, this gives rise to a total function from $\mathbb{T}/\equiv_{\alpha}$ to $\mathbb{T}/\equiv_{\alpha}$.

Naïve substitution

François **Pottier**

[MPRI 2.4](#page-0-0) **Towards** machinechecked proofs

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0) Naïve substitution does not have the side condition $z \notin f(v(u) \cup \{x\})$.

It is a total function from T to T , but fails condition 2, hence does not give rise to a function from $\mathbb{T}/\equiv_{\alpha}$ to $\mathbb{T}/\equiv_{\alpha}$.

$$
(\lambda y. x + y)[2 \times y/x] = \lambda y. 2 \times y + y
$$
 -naïve

$$
(\lambda y. x + y)[2 \times y/x] =
$$

$$
(\lambda z. x + z)[2 \times y/x] = \lambda z. 2 \times y + z
$$
 - capture-avoiding

Representations of syntax

proofs François Pottier

[MPRI 2.4](#page-0-0) Towards machinechecked

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

How should syntax with binding be represented in a proof assistant? Several representations come to mind:

- equivalence classes of trees the nominal approach [\(Pitts, 2006\);](https://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf)
- de Bruijn notation used in this course [\(de Bruijn, 1972\);](https://www.win.tue.nl/automath/archive/pdf/aut029.pdf)
- (parametric) higher-order abstract syntax [\(Chlipala, 2008\);](http://adam.chlipala.net/papers/PhoasICFP08/)
- the locally nameless representation [\(Charguéraud, 2009\);](https://www.chargueraud.org/research/2009/ln/main.pdf)
- and many more.

One should choose a representation for which the proof assistant has good support.

Francois Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0)

What about the nominal approach?

The nominal approach is prevalent in informal (paper) proofs.

It is implemented in Nominal Isabelle [\(Urban, 2008\).](https://nms.kcl.ac.uk/christian.urban/Publications/nom-tech.pdf)

• [Urban and Narboux \(2008\)](https://nms.kcl.ac.uk/christian.urban/Nominal/manual/SOS.pdf) present typical proofs about operational semantics.

It is not well supported in Coq, perhaps for engineering reasons.

• [Cohen \(2013\)](http://perso.crans.org/cohen/papers/quotients.pdf) shows how to use quotients in Coq (when they exist) and how to construct them (up to certain axioms or hypotheses).

What about other approaches?

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0)

[Nominal](#page-14-0) [de Bruijn](#page-27-0) The [POPLmark challenge](https://www.seas.upenn.edu/~plclub/poplmark/) proposes a benchmark problem: a proof of type soundness for $F_{\leq \cdot}$.

15 solutions have been proposed, using 8 different representations in 7 different proof assistants.

No consensus, yet!

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

1 [Why mechanize definitions and proofs?](#page-1-0)

³ [Representing abstract syntax with binders](#page-13-0) [On paper: the nominal representation](#page-14-0) [In a machine: de Bruijn's representation](#page-27-0)

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

de Bruijn indices

A simple idea: don't use names.

Instead, use pointers from variables back to their binding site.

A second idea: use relative pointers, encoded as natural integers.

- 0 denotes the nearest enclosing λ , i.e., the most recently bound variable;
- 1 denotes the next enclosing λ , and so on.

 λ x.x is λ 0.

```
\lambdaf.\lambdax. f x is \lambda\lambda(10).
```
Why is this a good idea?

machinechecked proofs François

[MPRI 2.4](#page-0-0) Towards

Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

de Bruijn syntax has several strengths:

- it is easily defined;
- it is inductive terms are trees, no quotient is required;
- it is canonical α -equivalence is just equality.

Its drawbacks are well-known, too:

- terms are more difficult to read a printer may be needed;
- definitions and theorems can seem difficult to write and read – mostly a matter of habit?

λ -terms in de Bruijn's notation

checked proofs François **Pottier**

[MPRI 2.4](#page-0-0) Towards machine-

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

The syntax of λ -calculus is simple:

 $t ::= x | \lambda t | t t$ where $x \in \mathbb{N}$

In Coq:

Inductive term := | Var: **nat** -> term Lam: term \rightarrow term App: term \rightarrow term \rightarrow term.

Suggested exercises

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Exercise: In OCaml, implement conversions between the nominal representation and de Bruijn's representation, both ways.

Exercise: In OCaml, implement an exhaustive enumeration of the λ -terms of size s and with at most n free variables. (Let variables have size 0; let λ -abstractions and applications contribute 1.)

Exercise: Use this exhaustive enumeration to test that the above conversions are inverses of each other.

Substitution

— Substitution is the éminence grise of the λ -calculus.

[MPRI 2.4](#page-0-0) **Towards** machinechecked proofs François **Pottier** Why [mechanize?](#page-1-0) [Coq in a](#page-8-0) nutshell [Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Abadi, Cardelli, Curien, Lévy, [Explicit substitutions,](http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-54.pdf) 1990.

Substitutions

Towards machinechecked proofs

[MPRI 2.4](#page-0-0)

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Let a substitution σ be a total function of variables N to terms T. It can also be thought of as an infinite sequence $\sigma(0) \cdot \sigma(1) \cdot \ldots$ Let *id* be the identity substitution: $id(x) = x$. $0.1.2...$

Let +*i* be the lift substitution: $(+i)(x) = x + i$.

• $i \cdot (i + 1) \cdot (i + 2) \cdot ...$

Let $t \cdot \sigma$ be the cons substitution that maps 0 to t and $x + 1$ to $\sigma(x)$.

 \bullet t \cdot $\sigma(0)$ \cdot $\sigma(1)$ \cdot ...

id can in fact be viewed as sugar for $0 \cdot (+1)$.

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Substitution application and composition

Can we define $t[\sigma]$, the application of the substitution σ to the term t? It should satisfy the following laws:

 $x[\sigma] = \sigma(x)$ $(\lambda t)[\sigma] = ?$ $(t_1 t_2)[\sigma] = t_1[\sigma] t_2[\sigma]$

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Substitution application and composition

Can we define $t[\sigma]$, the application of the substitution σ to the term t? It should satisfy the following laws:

 $x[\sigma] = \sigma(x)$ $(\lambda t)[\sigma] = \lambda(t[?])$ $(t_1 t_2)[\sigma] = t_1[\sigma] t_2[\sigma]$

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Substitution application and composition

Can we define $t[\sigma]$, the application of the substitution σ to the term t? It should satisfy the following laws:

 $x[\sigma] = \sigma(x)$ $(\lambda t)[\sigma] = \lambda(t[0 \cdot ?])$ $(t_1 t_2)[\sigma] = t_1[\sigma] t_2[\sigma]$

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Substitution application and composition

Can we define $t[\sigma]$, the application of the substitution σ to the term t? It should satisfy the following laws:

 $x[\sigma] = \sigma(x)$ $(\lambda t)[\sigma] = \lambda(t[0 \cdot (\sigma; +1)])$ $(t_1 t_2)[\sigma] = t_1[\sigma] t_2[\sigma]$

and the composition of two substitutions σ_1 ; σ_2 should satisfy:

 $(\sigma_1 : \sigma_2)(x) = (\sigma_1(x))[\sigma_2]$

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Substitution application and composition

Can we define $t[\sigma]$, the application of the substitution σ to the term t? It should satisfy the following laws:

 $x[\sigma] = \sigma(x)$
 $(\lambda t)[\sigma] = \lambda(t[\hat{\pi} \sigma])$ $(t_1 t_2)[\sigma] = t_1[\sigma] t_2[\sigma]$

where $\hat{\sigma}$ stands for $0 \cdot (\sigma : +1)$

and the composition of two substitutions σ_1 ; σ_2 should satisfy:

 $(\sigma_1 : \sigma_2)(x) = (\sigma_1(x))[\sigma_2]$

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Substitution application and composition

Can we define $t[\sigma]$, the application of the substitution σ to the term t? It should satisfy the following laws:

 $x[\sigma] = \sigma(x)$
 $(\lambda t)[\sigma] = \lambda(t[\hat{\sigma}])$ $(t_1 t_2)[\sigma] = t_1[\sigma] t_2[\sigma]$

where $\hat{\sigma}$ stands for $0 \cdot (\sigma : +1)$

and the composition of two substitutions σ_1 ; σ_2 should satisfy:

 $(\sigma_1 : \sigma_2)(x) = (\sigma_1(x))[\sigma_2]$

These equations are mutually recursive, so do not form a valid definition.

This can be worked around by defining $t[+i]$ first ("lift"), then σ ; +*i*, whence $\hat{\sigma}$, whence $t[\sigma]$ ("subst").

de Bruijn algebra

proofs François **Pottier**

[MPRI 2.4](#page-0-0) Towards machinechecked

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

The following equations are sound, that is, valid:

$$
(\lambda t)[\sigma] = \lambda(t[0 \cdot (\sigma; +1)]) \qquad \text{id}; \sigma = \sigma
$$
\n
$$
(t_1 \ t_2)[\sigma] = t_1[\sigma] \ t_2[\sigma] \qquad \sigma; \text{ id} = \sigma
$$
\n
$$
0[t \cdot \sigma] = t \qquad \qquad (\sigma_1; \sigma_2); \sigma_3 = \sigma_1; (\sigma_2; \sigma_3)
$$
\n
$$
(+1); (t \cdot \sigma) = \sigma \qquad \qquad (t \cdot \sigma_1); \sigma_2 = t[\sigma_2] \cdot (\sigma_1; \sigma_2)
$$

Furthermore, they are complete [\(Schäfer](https://www.ps.uni-saarland.de/Publications/documents/SchaeferEtAl_2015_Completeness.pdf) et al., 2015).

That is, if an equation based on the following grammar is valid, then it logically follows from the above equations.

Schäfer et al. also prove that validity is decidable.

de Bruijn algebra

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Decidability means that the machine can answer questions for us. Does t [id] = t hold? Yes.

Does $t[\sigma_1][\sigma_2] = t[\sigma_1:\sigma_2]$ hold? Yes.

And so on, and so forth.

For proofs of the above two equations, see Schäfer et al., Fact 6.

Yet, we do not really care about these proofs – a machine can find them.

Coq tactics for de Bruijn algebra

checked proofs François **Pottier**

[MPRI 2.4](#page-0-0) **Towards** machine-

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

The Coq library [Autosubst](https://www.ps.uni-saarland.de/autosubst/) offers two tactics:

- autosubst proves an equation between terms or substitutions;
- asimplifies a goal in which a term or substitution appears.

λ-terms with AutoSubst

proofs François Pottier

[MPRI 2.4](#page-0-0) Towards machinechecked

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0) nutshell

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

The syntax of λ -calculus can be declared as follows:

Inductive term := | Var: var -> term | Lam: {bind term} -> term App: term \rightarrow term \rightarrow term.

AutoSubst defines var as a synonym for **nat** and {bind term} as a synonym for term.

AutoSubst defines substitution application, composition, etc., for us.

AutoSubst key notations

Pottier Why [mechanize?](#page-1-0)

[MPRI 2.4](#page-0-0) **Towards** machinechecked proofs François

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

 \vert t : sigma \vert substitution "cons" the substitution $+i$ the identity substitution substitution application substitution composition taking a substitution under a binder taking a substitution under n binders substituting u for 0 in t

François **Pottier**

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

"lift" as end-of-scope

Suppose we are writing a program in de Bruijn's notation.

Suppose we are in a context where n variables exist and we wish to refer to a subterm t that has $n-1$ free variables. That is, t does not know about one of our variables, say *i*, where $0 \le i < n$.

We cannot just refer to t , as some indices would be off by one.

Instead, we must use $t[\hat{\mathbb{q}}^i(+1)].$

Ugly, low-level index arithmetic? No: read it as an end-of-scope mark.

Adopt a nicer notation for it, say "eos *i* in t".

There is no syntax for it in the λ -calculus; it is a meta-level notation.

A related, object-level end-of-scope construct, "abdmal", has been studied by [Hendriks and van Oostrom \(2003\).](https://doi.org/10.1007/978-3-540-45085-6_11)

Calculi of explicit substitutions

[MPRI 2.4](#page-0-0) Towards machinechecked proofs

François Pottier

Why [mechanize?](#page-1-0)

[Coq in a](#page-8-0)

[Syntax with](#page-13-0) [Nominal](#page-14-0) [de Bruijn](#page-27-0)

Similarly, we have viewed substitution application as a meta-level operation. There is no syntax for it in the λ -calculus.

In the $\lambda \sigma$ -calculus, however, there is syntax for substitutions and substitution application, and a set of small-step reduction rules that explain how substitutions interact with λ -abstractions and applications.

Abadi, Cardelli, Curien, Lévy, [Explicit substitutions,](http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-54.pdf) 1990.

Curien, Hardin, Lévy, [Confluence properties](https://hal.inria.fr/inria-00077189/) [of weak and strong calculi of explicit substitutions,](https://hal.inria.fr/inria-00077189/) 1992.