MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

MPRI 2.4

Operational semantics and reduction strategies

Francois Pottier

Ve

2017

MPRI 2.4
Semantics

RS The A-calculus

Pottier

The formal model that underlies all functional programming languages.

Abstract syntax:
Lbu:=x|Axt|tt (terms)

Reduction:
(Ax.t) u — [u/x]t B)

Mnemonic: read [u/x]t as “substitute u for x in t”.

Landin, Correspondence betw. ALGOL 60 and Church’s A-notation, 1965.

http://doi.acm.org/10.1145/363744.363749

MPRI 2.4
Semantics

Frangois From the A-calculus to a functional
o programming language

Start from the A-calculus, and follow several steps:

e Fix a reduction strategy (today).
¢ Develop efficient execution mechanisms (next week).

¢ Enrich the language with primitive data types and operations,
recursion, algebraic data structures, and so on (next week).

e Define a static type system (Rémy’s lectures).

@ Reduction strategies

4/20

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Operational semantics

Plotkin: — It is only through having an operational semantics that the
[A-calculus can] be viewed as a programming language.

Scott: — Why call it operational semantics? What is operational about it?

An operational semantics describes the actions of a machine,
in the simplest possible manner / at the most abstract level.

Plotkin, A Structural Approach to Operational Semantics, 1981, (2004).
Plotkin, The Origins of Structural Operational Semantics, 2004.

http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/Origins_SOS.pdf

The call-by-value strategy

MPRI 2.4
Semantics
Frangois
Pottier
Reduction
strategies
Values form a subset of terms:
Lu == x|Ax.t|tt (terms)
v o= x|Axt (values)

A value represents the result of a computation.
The call-by-value reduction relation t —,, t’ is inductively defined:

AprpPL ArPVR
Bv t—cov 1’ U—cpy U’
tu—gw t' u VU—g VU

(Ax.t) v —epy [v/X]t

This is known as a small-step operational semantics.

MPRI 2.4
Semantics

Frangois Example

Pottier

Reduction
strategies

This is a proof (a.k.a. derivation) that one reduction step is permitted:

[x/1]x =1

(Ax.x) 1 —gpy 1
ArPR

(Ax.Ay.y x) (Axx) 1) —cov (AXAY.y x) 1
(Ax.Ay.y x) (Ax.x) 1) (Ax.X) — v (AXAY.y X) 1 (AX.X)

AppL

MPRI 2.4
Semantics

Frangois Features of call-by-value reduction

Pottier

Reduction
strategies

e Weak reduction. One cannot reduce under a A-abstraction.

Thus, values do not reduce.
Also, we are interested in reducing closed terms only.

e Call-by-value. An actual argument is reduced to a value before it is
passed to a function.

(Ax.t) v —epy [V/X] (Ax. Uo /x|t

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Features of call-by-value reduction

o Left-to-right. In an application t u, the term t must be reduced to a
value before u can be reduced at all.

ArpVR
U —cpy U

VU—y VU

e Determinism. For every term t, there is at most one term t’ such that

t — ey U holds.

MPRI 2.4
Semantics

Frangois Reduction sequences

Pottier

Reduction
strategies

Sequences of reduction steps describe the behavior of a term.
The three following situations are mutually exclusive:

e Termination: t — gy i —ctv f2 —coy - - —cbv V.
The value v is the result of evaluating t.
The term t converges to v.
e Divergence: t —epy 1 —cby f2 —cbv - -+ —cov In —cbv - - -
The sequence of reductions is infinite.
The term t diverges.

o Error: t —cpv fi —ctv b —cov - —cbv In —cov
where t, is not a value, yet does not reduce: t, is stuck.
The term t goes wrong.

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Examples of reduction sequences

Termination:

(AxAy.y x) (Ax.x) 1) (Ax.X) —ayv (AXAy.y x) 1 (Ax.X)
—aw (Ay.y 1) (Ax.x)
—av (Axx) 1
—epy 1

Divergence:

(Axx X) (Ax.X X) —epy (AX.X X) (AX.X X) —cpy - - -

Error:
(AX.X X) 2 0oy 22 =5y -

The active redex is highlighted in red.

MPRI 2.4

Semantics

Frangois An alternative style: evaluation contexts
Pottier

Reduction
strategies

First, define head reduction:

Bv
(Ax.t) v —"ed [v /x|t

Then, define reduction as head reduction under an evaluation context:

Crx
t—a 1
E[t] —eov E[t]
where evaluation contexts E are defined by E :=[]| Eu| Vv E.

Wright and Felleisen, A syntactic approach to type soundness, 1992

http://ecee.colorado.edu/ecen5533/fall11/reading/wright-syntactic.pdf

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Unique decomposition

In this alternative style, the determinism of the reduction relation follows
from a unique decomposition theorem:

Theorem (Unique Decomposition)

For every term t, there exists at most one pair (E, u) such that t = E[u]

head
and u —gga

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

The call-by-name strategy

The call-by-name reduction relation t —p, t’ is defined as follows:
AppPL
t—con I’

p
(Ax.t) U —>epn [U/x]t tu—ent' u

The unevaluated actual argument is passed to the function.
It is later reduced if / when / every time the function body needs its value

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

An example reduction sequence

(AxAy.y x) (Ax.x) 1) (Ax.x)

>cbn
?cbn
>cbn

?cbn

MPRI 2.4

Semantics

Frangois Call-by-value versus call-by-name
Pottier

Reduct_\on

steales If t terminates under CBV, then it also terminates under CBN (*).

The converse is false:

AN w —en 1

AxN)w —3,

where w = (Ax.x x) (Ax.x x) diverges under both strategies.

Call-by-value can perform fewer reduction steps:
(Ax. x + x) t evaluates t once under CBYV, twice under CBN.

Call-by-name can perform fewer reduction steps:
(Ax. 1) t evaluates t once under CBV, not at all under CBN.

(*) In fact, the standardization theorem implies that
if t can be reduced to a value via any strategy,
then it can be reduced to a value via CBN.

See Takahashi (1995).

http://dx.doi.org/10.1006/inco.1995.1057

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Encoding call-by-name in a CBV language

Use thunks: functions A_.u whose purpose is to delay the evaluation of u.

IxI = x0
[Ax.t] = Ax.[t]
[tul = [t](A_[ul)

Exercise: Can you state that this encoding is correct? Can you prove it?

In a simply-typed setting, this transformation is type-preserving: that is,
I+t: Timplies [I]+ [t]: [T], where

[[T1 g Tgﬂ = (unit g [[T1ﬂ) e [[Tg]]

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Encoding call-by-value in a CBN language

This is somewhat more involved.
The call-by-value continuation-passing style (CPS) transformation,

studied later on in this course, achieves this.

MPRI 2.4
Semantics

Francois
Pottier

Reduction
strategies

Call-by-need

Call-by-need, also known as lazy evaluation,
eliminates the main inefficiency of call-by-name
(namely, possibly repeated computation)

by introducing memoization.

It, too, can be defined via an operational semantics
(Ariola and Felleisen, 1997; Maraist, Odersky, Wadler, 1998).

It is used in Haskell, where it encourages a modular style of programming.

Hughes, Why functional programming matters, 1990.

http://repository.readscheme.org/ftp/papers/plsemantics/felleisen/jfp96-af.pdf
https://doi.org/10.1017/S0956796898003037
https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

MPRI 2.4

sementes Encoding call-by-need in a CBV language

Francois
Pottier

Reduction
strategies

Call-by-need can be encoded into CBV by using memoizing thunks:

[x] = forcex
[Axt] = Ax[t]
[tu]l = [t] (suspend (A_.[u]))

“suspend (A_.u)” is written 1azy uin OCaml.

“force x” is written Lazy.force x.

Such a thunk evalutes u when first forced,

then memoizes the result,
s0 no computation is required if the thunk is forced again.

	Reduction strategies

