
MPRI course 2-4
“Programmation fonctionnelle et systèmes de types”

Programming project

François Pottier

2017–2018

1 Summary
The purpose of this programming project is to implement a tiny compiler from Lambda, an untyped
λ-calculus, down to C.

2 Required software
To use the sources that we provide, you need OCaml and Menhir. Any reasonably recent version should
do. You also need the OCaml packages process, pprint, and ppx_deriving. If you have installed
OCaml via opam, issue the following command:

opam install menhir process pprint ppx_deriving

3 Overview of the provided sources
Many components of the compiler are provided, including: definitions of the syntax of terms; a lexer and
parser; a pretty-printer for C programs; some code for dealing with names and binders.

In the src/ directory, you will find the following files:

alphalib/Atom.{ml, mli} An atom is an internal object used to represent a name. It is a pair of a unique
integer identity and a (not necessarily unique) string. The function Atom.fresh creates a fresh
atom.

Error.{ml, mli} This module deals with places (positions in the source code) and error messages. It is
used to report syntax errors and unbound variables.

Parser.mly, Lexer.mll Together, the lexer and parser define the concrete syntax of the surface language.

RawLambda.ml This is the surface language. It is an untyped λ-calculus, extended with possibly re-
cursive let bindings, primitive integer constants, four primitive integer arithmetic operations, and
a primitive integer display operation print. We do not explicitly define the semantics of this cal-
culus: it is standard. Let us just note the following: (1) the semantics is call-by-value; (2) the
right-hand side of a let rec construct must be a λ-abstraction; (3) the print operation prints
a primitive integer value (followed with a newline character) on the standard output channel and
returns this value; (4) the final value of a program is not displayed; it is dropped.

1



Cook.{ml, mli} The translation of RawLambda to Lambda.

Lambda.ml This is a slightly simplified version of the surface language. It is an untyped λ-calculus, ex-
tended with possibly recursive λ-abstractions, nonrecursive let bindings, and the primitive integer
constants and operations. Some well-formedness properties (such as the fact that every variable is
properly bound) are checked during the translation of RawLambda to Lambda. From this point
on, no compilation errors are expected: every Lambda program must be translated to a C pro-
gram. Because Lambda is untyped, some Lambda programs go wrong; they can be translated to
C programs that crash. A well-typed Lambda program must be translated to a C program that runs
safely.

CPS.{ml, mli} Through a CPS transformation, the surface language Lambda is translated down to the
intermediate language Tail. It is up to you to implement this transformation.

Tail.ml This intermediate language describes the result of the CPS transformation. It is a lambda-
calculus where the ordering of computations is explicit and where every function call is a tail
call. Like the surface calculus, it allows λ-abstractions that have free variables.

Defun.{ml, mli} Through defunctionalization, the intermediate language Tail is translated down to the
next intermediate language, Top. It is up to you to implement this transformation.

Top.ml This intermediate language describes the result of defunctionalization. It retains the key features
of the previous calculus, Tail, in that the ordering of computations is explicit and every function call
is a tail call. Furthermore, λ-abstractions disappear. A memory block Con now contains an integer
tag followed with a number of fields, which hold values. A switch construct appears, which
allows testing the tag of a memory block. A number of (closed, mutually recursive) functions can
be defined at the top level.

Finish.{ml, mli} This function implements a translation of the intermediate language Top down to C.
This transformation is mostly a matter of choosing appropriate C constructs to reflect the concepts
of the language Top.

prologue.h This C header file defines a small number of types and macros which are used in the gener-
ated code. You may find it interesting.

kremlin/C.ml This is an abstract syntax tree for a subset of the C language. It is borrowed from Jonathan
Protzenko’s Kremlin, a tool which translates a subset of F* down to C.

Main.ml This driver interprets the command line and invokes the above modules as required.

Makefile, _tags Build instructions. Issue the command “make” in order to generate the executable. You
may need to first run “opam install menhir ppx_deriving pprint process”.

joujou The executable file for the program. Type “./joujou filename” to process the program stored
in filename. Use the option “--debug” to display every intermediate abstract syntax tree.

Testing In the tests/ directory are small programs written in the source language, Lambda, which
you can give as arguments to joujou.

In order to test your implementation, run “make test”. The script submits the files tests/*.lambda
to your compiler, then compiles and runs the resulting C programs, and checks that the outcomes are ap-
propriate.

The file tests/loop/loop.lambda is not part of the test suite, but is included for fun. It is a program
that prints 0, 1, 2, . . . and never terminates. If your compiler produces tail-recursive code, and if your C

2



compiler is able to recognize and optimize tail calls, then the compiled C program should actually run
forever. To try it out, just move the file tests/loop/loop.lambda one level up into tests/.

Advice We strongly recommend that you regularly take checkpoints (that is, snapshots of your work)
so that you can later easily roll back to a previous consistent state in case you run into an unforeseen
problem. Using a versioning tool such as git is highly recommended.

4 Task description
Task 1a In the files CPS.{ml, mli}, implement the translation of the surface language Lambda down
to the intermediate language Tail. This is a CPS transformation.

Task 1b In the files Defun.{ml, mli}, implement the translation of the intermediate language Tail down
to the next intermediate language, Top. This is a defunctionalization.

Test At this point, “make test” should work. Feel free to add more test files in the subdirectory
tests/.

Task 2 Extend the surface language with a new primitive construct, “ifzero e0 then e1 else e2”,
which tests whether a primitive integer is zero or nonzero, and takes an appropriate branch. This requires
extending all compiler passes, beginning with the lexer and parser, all the way down. Create more test
files in tests/ that exploit the new construct, and make sure that “make test” still works.

Optional tasks If you wish to go further and receive extra credit, there are a number of things that you
might do. Here are some suggestions. This list is not sorted and not limiting. Not all suggestions are
easy! Think before attacking an ambitious extension.

• In the intermediate language Top, eliminate variable-variable bindings “let x = y in e”, so as
to produce cleaner C code in the end.

• Add mutually recursive functions to the source language.

• Add exceptions to the source language.

• Add a delimited control operator to the source language.

• Add a form of algebraic data structures to the source language.

• Compile functions of more than one argument in a more efficient way.

• Perform lightweight defunctionalization: if a function g refers to a toplevel function f, then the
closure for g need not contain a slot for f.

• Gracefully detect runtime errors. An (ill-typed) program that goes wrong should not crash; it should
display a nice error message.

• Write a static type-checker or type inference system.

• Plug in a conservative garbage collector.

In each case, please write a textual explanation of what you did, how you did it, and where to look for
it in your code. Also, propose test files that illustrate what you did.

3



5 Evaluation
Assignments will be evaluated by a combination of:

• Testing. Your compiler will be tested with the input programs that we provide (make sure that
“make test” succeeds!) and with additional input programs.

• Reading. We will browse through your source code and evaluate its correctness and elegance.

6 What to turn in
When you are done, please e-mail to François Pottier and Pierre-Évariste Dagand and Yann Régis-Gianas
and Didier Rémy a .tar.gz archive containing:

• All your source files.

• Additional test files written in the small programming language, if you wrote any.

• If you implemented “extra credit” features, a README file (written in French or English) describing
these additional features, how you implemented them, and where we should look in the source code
to see how they are implemented.

7 Deadline
Please turn in your assignment on or before Friday, February 16, 2018.

References
[1] Olivier Danvy and Andrzej Filinski. Representing control: A study of the CPS transformation. Math-

ematical Structures in Computer Science, 2(4):361–391, 1992.

[2] François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization and concretization.
Higher-Order and Symbolic Computation, 19:125–162, March 2006.

4

mailto:francois.pottier@inria.fr,pierre-evariste.dagand@lip6.fr,yann.regis-gianas@pps.jussieu.fr,didier.remy@inria.fr
mailto:francois.pottier@inria.fr,pierre-evariste.dagand@lip6.fr,yann.regis-gianas@pps.jussieu.fr,didier.remy@inria.fr
https://doi.org/10.1017/S0960129500001535
http://gallium.inria.fr/~fpottier/publis/fpottier-gauthier-hosc.pdf

	Summary
	Required software
	Overview of the provided sources
	Task description
	Evaluation
	What to turn in
	Deadline

