(* Projet Coq - WP - MPRI 2.7.1 *) (***** Partie 1 : definition de While ****************************************) Require Import ZArith.BinInt. Import Z. Definition Var := nat. Definition Mem := Var -> Z. Definition Expr:= Mem -> Z. Inductive Instr : Type := | skip: Instr | abort: Instr | assign: Var -> Expr -> Instr | seq: Instr -> Instr -> Instr | ifelse: Expr -> Instr -> Instr -> Instr | while: Expr -> Instr -> Instr. Definition ifonly (exp: Expr) (inst: Instr) : Instr := ifelse exp inst skip. (***** CPO *******************************************************************) Fixpoint nat_eq x y := match x, y with | 0, 0 => true | 0, S _ => false | S _, 0 => false | S x0, S y0 => nat_eq x0 y0 end. Definition Sequence (S: Type) := nat -> S. Inductive cpo (T: Type): Type := | CpoError: (cpo T) | CpoElem: T -> (cpo T). Definition cpo_leq: forall (T: Type), cpo T -> cpo T -> Prop := fun T x y => match x, y with | CpoError _, _ => True | CpoElem _ x0, CpoElem _ y0 => x0 = y0 | _, _ => False end. Arguments cpo_leq {T} _ _. Infix "cpo<=" := cpo_leq (at level 100). Definition is_chain: forall (T: Type), Sequence (cpo T) -> Prop := fun T chain => forall (n: nat), (chain n) cpo<= (chain (S n)). Arguments is_chain {T} _. Definition is_lub_of: forall (T: Type), Sequence (cpo T) -> cpo T -> Prop := fun T chain elt => forall (n: nat), (chain n) cpo<= elt. Arguments is_lub_of {T} _ _. Axiom find_lub: forall (T: Type), Sequence (cpo T) -> cpo T. Arguments find_lub {T} _. Axiom find_lub_correct: forall (T: Type), forall (chain: Sequence (cpo T)), is_chain chain -> is_lub_of chain (find_lub chain). Arguments find_lub_correct {T} {chain} _. (***** Interpretation ********************************************************) Definition subst: Mem -> Var -> Z -> Mem := fun (m: Mem) (v: Var) (z: Z) (v2: Var) => if nat_eq v v2 then z else m v2. Notation "m [ x <- z ]" := (subst m x z) (at level 50, left associativity). Definition MemCpo := cpo Mem. Definition MemError := CpoError Mem. Definition MemElem := CpoElem Mem. Fixpoint interp (inst: Instr) (mem: MemCpo) : MemCpo := match mem with | CpoError _ => MemError | CpoElem _ mem0 => match inst with | skip => MemElem mem0 | abort => MemError | assign v e => (MemElem (mem0 [v <- (e mem0)])) | seq instr1 instr2 => interp instr2 (interp instr1 (MemElem mem0)) | ifelse guard instrIf instrElse => if ((guard mem0) =? 0) % Z then interp instrIf mem else interp instrElse mem | while guard body => let fix while_chain (mem: MemCpo) (n: nat): MemCpo := match n with | 0 => mem | S m => match while_chain (MemElem mem0) m with | CpoError _ => MemError | CpoElem _ submem => if ((guard submem) =? 0) % Z then interp body (MemElem submem) else mem end end in find_lub (fun n => match while_chain (MemElem mem0) n with | CpoError _ => MemError | CpoElem _ submem => if ((guard submem) =? 0) % Z then MemError else MemElem submem end) end end. (***** Validite, prouvabilite pour Hoare *************************************) Definition Assert := Mem -> Prop. Delimit Scope assert with assert. Definition assertTop : Assert := fun _ => True. Definition assertBot : Assert := fun _ => False. Definition assertNot : Assert -> Assert := fun orig mem => ~ (orig mem). Notation "~ x" := (assertNot x) (at level 75, right associativity) : assert. Definition assertAnd : Assert -> Assert -> Assert := fun x1 x2 mem => (x1 mem) /\ (x2 mem). Infix "/\" := assertAnd : assert. Definition assertOr : Assert -> Assert -> Assert := fun x1 x2 mem => (x1 mem) \/ (x2 mem). Infix "\/" := assertOr : assert. Definition assertImpl : Assert -> Assert -> Assert := fun x1 x2 => (~x1 \/ x2) % assert. Infix "->" := assertImpl : assert. Definition assertForall : Var -> Assert -> Assert := fun ident asser mem => forall (z: Z), asser (mem [ident <- z]). Notation "\-/ x" := (assertForall x) (at level 90, no associativity) : assert. Definition existsForall : Var -> Assert -> Assert := fun ident asser mem => exists (z: Z), asser (mem [ident <- z]). Notation "'exists' x" := (existsForall x) (at level 87, no associativity): assert. Definition assertMemForall : Assert -> Assert := fun asser mem => forall (mem: Mem), asser mem. Notation "'\-/m' x" := (assertMemForall x) (at level 90, no associativity): assert. Definition existsMemForall : Assert -> Assert := fun asser mem => exists (mem: Mem), asser mem. Notation "'exists_m' x" := (existsMemForall x) (at level 87, no associativity): assert. Definition substAssert : Assert -> Var -> Z -> Assert := fun asser ident val mem => asser (mem [ident <- val]). Notation "a [[ x <- z ]]" := (substAssert a x z) (at level 50, left associativity). Definition substAssertExpr : Assert -> Var -> Expr -> Assert := fun asser ident expr mem => asser (mem [ident <- (expr mem)]). Notation "a [[ x <- 'expr' z ]]" := (substAssertExpr a x z) (at level 50, left associativity). Definition assertOfExpr : Expr -> Assert := fun expr mem => expr mem <> 0%Z. Definition assertImplLogical : Assert -> Assert -> Prop := fun a1 a2 => forall (m : Mem), (a1 m) -> (a2 m). (***** Hoare provability *****************************************************) Parameter hoare_provability : Assert -> Instr -> Assert -> Prop. Notation "|- [| pre |] instr [| post |]" := (hoare_provability pre instr post) (at level 30): assert. Axiom h_skip: forall (asser: Assert), ( |- [|asser|] skip [|asser|]) % assert. Axiom h_abort: forall (a1:Assert), forall (a2: Assert), (|- [|a1|] abort [|a2|]) % assert. Axiom h_assign: forall (asser: Assert), forall (x: Var), forall (e: Expr), (|- [| asser [[ x <- expr e ]] |] (assign x e) [|asser|]) % assert. Axiom h_conseq: forall (a1: Assert), forall (a1': Assert), forall (a2: Assert), forall (a2': Assert), forall (s: Instr), (|- [| a1' |] s [| a2' |]) % assert -> (assertImplLogical a1 a1') -> (assertImplLogical a2' a2) -> (|- [| a1 |] s [| a2 |]) % assert. Axiom h_seq: forall (a1: Assert), forall (a2: Assert), forall (a3: Assert), forall (s1: Instr), forall (s2: Instr), (|- [|a1|] s1 [|a2|]) % assert -> (|- [|a2|] s2 [|a3|]) % assert -> (|- [|a1|] (seq s1 s2) [|a3|]) % assert. Axiom h_if: forall (a1: Assert), forall (a2: Assert), forall (e: Expr), forall (s1: Instr), forall (s2: Instr), (|- [| a1 /\ (assertOfExpr e) |] s1 [| a2 |]) % assert -> (|- [| a1 /\ ~ (assertOfExpr e) |] s2 [| a2 |]) % assert -> (|- [| a1 |] (ifelse e s1 s2) [| a2 |]) % assert. Axiom h_while: forall (inv: Assert), forall (e: Expr), forall (s: Instr), (|- [| inv /\ (assertOfExpr e) |] s [| inv |]) % assert -> (|- [| inv |] (while e s) [| inv /\ ~ (assertOfExpr e) |]) % assert. (***** Hoare: provability implies consequence ********************************) Definition conseq_or_bottom (y: Assert) (m: MemCpo) := match m with | CpoError _ => True | CpoElem _ m0 => y m0 end. Definition hoare_consequence (pre: Assert) (instr: Instr) (post: Assert) := forall mem: Mem, (pre mem) -> (conseq_or_bottom post (interp instr (MemElem mem))). Notation "|= [| pre |] instr [| post |]" := (hoare_consequence pre instr post) (at level 30): assert. Theorem hoare_provability_implies_consequence : forall (pre: Assert), forall (s: Instr), forall (post: Assert), ( |- [| pre |] s [| post |] ) % assert -> ( |= [| pre |] s [| post |] ) % assert. Proof. (* TODO *) Admitted.