congestvpn/UdpVpn.cpp

276 lines
8.5 KiB
C++

#include "UdpVpn.hpp"
#include <chrono>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <poll.h>
#include <errno.h>
#include <math.h>
#include "ip_header.hpp"
static const size_t VPN_MTU = 1460; // TODO determine this -- issue #3
UdpVpn::UdpVpn()
: _stopped(false), _dump_requested(false), _vpn_mtu(VPN_MTU),
_tun_dev("cvpn%d"), _peer(nullptr)
{
_last_tick = _last_control_sent =
std::chrono::steady_clock::now() - std::chrono::seconds(1);
_tun_dev.set_mtu(VpnPacket::get_tunnelled_mtu(_vpn_mtu));
_socket = socket(AF_INET6, SOCK_DGRAM, 0);
if(_socket < 0)
throw UdpVpn::InitializationError("Cannot create socket", errno, true);
}
UdpVpn::~UdpVpn() {
close(_socket);
}
void UdpVpn::run() {
int rc;
int start_at_fd = 0; // read from polled fds in round-robin fashion
int cur_fd;
int nfds = 2;
struct pollfd poll_fds[2];
// poll_fds[0]: tun device
poll_fds[0].fd = _tun_dev.get_fd();
poll_fds[0].events = POLLIN;
// poll_fds[1]: UDP socket device
poll_fds[1].fd = _socket;
poll_fds[1].events = POLLIN;
while(!_stopped) {
if(_dump_requested) {
dump_state();
_dump_requested = false;
}
rc = poll(poll_fds, nfds, 10); // timeout every 10ms
if(rc < 0) {
if(errno == EINTR) // Interrupt.
continue;
throw UdpVpn::NetError(
"Error polling from interface", errno, true);
}
// ## Check periodic actions
if(_peer) {
if(std::chrono::steady_clock::now() - _last_control_sent
> std::chrono::milliseconds(100))
{
if(_peer->send_control_packet())
_last_control_sent = std::chrono::steady_clock::now();
}
}
if(std::chrono::steady_clock::now() - _last_tick
> std::chrono::milliseconds(50))
{
_last_tick = std::chrono::steady_clock::now();
if(_peer)
_peer->tick();
}
if(rc == 0) // Nothing to read -- timeout
continue;
cur_fd = start_at_fd;
do {
if(poll_fds[cur_fd].revents & POLLIN) {
if(cur_fd == 0)
receive_from_tun();
else if(cur_fd == 1)
receive_from_udp();
break;
}
cur_fd = (cur_fd + 1) % nfds;
} while(cur_fd != start_at_fd);
start_at_fd = (start_at_fd + 1) % nfds;
}
}
size_t UdpVpn::read_from_tun(char* buffer, size_t len) {
// We know that there is data available -- use `read()`
return _tun_dev.read(buffer, len);
}
size_t UdpVpn::read_from_tun(VpnDataPacket& packet) {
size_t payload_space = packet.get_payload_space();
size_t nread = read_from_tun(packet.get_payload(), payload_space);
packet.set_payload_size(nread);
if(!packet.parse_as_ipv6()) {
debugf("Ignoring packet with invalid header\n");
return 0;
}
if(nread != packet.get_ipv6_header().packet_length()) {
debugf("Ignoring packet with bad size (expected %d, got %d, buffer %d)\n",
packet.get_ipv6_header().packet_length(), nread, payload_space);
return 0;
}
return nread;
}
size_t UdpVpn::read_from_udp(char* buffer, size_t len,
sockaddr_in6& peer_addr)
{
ssize_t nread;
socklen_t peer_addr_len = sizeof(peer_addr);
nread = recvfrom(_socket, buffer, len, 0,
(struct sockaddr*) &peer_addr, &peer_addr_len);
if(nread < 0)
throw UdpVpn::NetError("Cannot receive datagram", errno, true);
if(nread == 0)
return 0;
if(peer_addr.sin6_family != AF_INET6) {
debugf("WARNING: Received non-ipv6 family datagram %d. Ignoring.\n",
peer_addr.sin6_family);
return 0;
}
if(peer_addr_len != sizeof(peer_addr)) {
debugf("WARNING: received unexpected source address length %u."
"Ignoring.\n",
peer_addr_len);
return 0;
}
return nread;
}
size_t UdpVpn::read_from_udp(VpnPacket& packet, sockaddr_in6& peer_addr) {
packet.upon_reception(); // The packet is not read yet, but it has arrived
size_t nread =
read_from_udp(packet.get_data(), packet.get_data_space(), peer_addr);
packet.set_data_size(nread);
return nread;
}
size_t UdpVpn::transmit_to_peer(VpnPacket& packet) {
if(!_peer) {
debugf("Dropping packet: no peer yet.\n");
return 0;
}
return _peer->write(packet);
}
void UdpVpn::receive_from_tun() {
VpnDataPacket packet(_vpn_mtu, false);
size_t nread = read_from_tun(packet);
if(nread == 0)
return;
if(!_peer) {
debugf("Dropping packet: no peer yet.\n");
return;
}
packet.set_peer(_peer.get());
kdebugf("Transmitting %s -> %s, size %d\n",
format_address(packet.get_ipv6_header().source.s6_addr),
format_address(packet.get_ipv6_header().dest.s6_addr),
nread);
packet.prepare_for_sending();
transmit_to_peer(packet);
}
void UdpVpn::receive_from_udp() {
VpnPacket packet(_vpn_mtu, true);
sockaddr_in6 peer_ext_addr;
size_t nread = read_from_udp(packet, peer_ext_addr);
if(nread == 0)
return;
// If we don't have a peer yet -- we're just setting the peer to nullptr.
packet.set_peer(_peer.get());
if(packet.is_control()) {
VpnControlPacket ctrl_packet(std::move(packet));
for(VpnPacketTLV tlv=ctrl_packet.first_tlv();
!tlv.past_the_end();
tlv.seek_next_tlv())
{
switch(tlv.get_type()) {
case VpnPacketTLV::PAYLOAD_TYPE_LOSS_REPORT:
if(_peer)
_peer->log_loss_report(VpnTlvLossReport(tlv));
break;
case VpnPacketTLV::PAYLOAD_TYPE_RTTQ:
if(_peer)
_peer->make_rtta_for(VpnTlvRTTQ(tlv));
break;
case VpnPacketTLV::PAYLOAD_TYPE_RTTA:
if(_peer)
_peer->log_rtta(VpnTlvRTTA(tlv));
break;
case VpnPacketTLV::PAYLOAD_TYPE_UNDEF:
default:
debugf("#%d+%lu: ignoring TLV with bad type %d.\n",
ctrl_packet.get_seqno(), tlv.get_offset(),
tlv.get_type());
break;
}
}
} else {
VpnDataPacket data_packet(std::move(packet));
acquire_peer(data_packet, peer_ext_addr);
receive_tunnelled_tlv(data_packet);
}
}
void UdpVpn::receive_tunnelled_tlv(VpnDataPacket& packet) {
if(!packet.parse_as_ipv6()) {
debugf("Reinjection: dropping packet with bad IPv6 header.\n");
return;
}
// Reinject into tun
kdebugf("Reinjecting tunnelled packet of size %d [#%ld, TS=%ld μs]\n",
packet.get_payload_size(),
packet.get_seqno(),
packet.get_sending_timestamp());
_tun_dev.write(packet.get_payload(), packet.get_payload_size());
}
void UdpVpn::dump_state() const {
if(!_peer) {
printf("===== Cannot dump state, no peer yet =====\n");
return;
}
const CongestionController& congest_ctrl =
_peer->get_congestion_controller();
printf("====== State dump ======\n");
printf("Packet loss rate (inbound): %.0lf%%\n",
round(_peer->get_loss_logger().get_loss_rate() * 100));
printf("Packet loss rate (outbound): %.0lf%%\n",
round(_peer->get_loss_reports().loss_rate() * 100));
printf("RTT: %.02lf ms avg, %.02lf ms last [last updated: %lu ms ago]\n",
(double)_peer->get_rtt().avg_rtt() / 1e3,
(double)_peer->get_rtt().cur_rtt() / 1e3,
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::steady_clock::now()
- _peer->get_rtt().get_last_update()).count()
);
printf("Total bytes transmitted: %s\n",
human_readable_unit(_peer->get_tot_bytes_sent(), "B"));
printf("Current outbound byte rate: %s\n",
human_readable_unit(_peer->get_outbound_byte_rate(), "Bps"));
printf("Available bandwidth:\n\t%s [loss based controller]\n",
human_readable_unit(congest_ctrl.get_lossbased_bandwidth(), "B")
);
printf("==== End state dump ====\n");
}