/* libunwind - a platform-independent unwind library Copyright (C) 2003 Hewlett-Packard Co Contributed by David Mosberger-Tang This file is part of libunwind. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Logically, we like to think of the stack as a contiguous region of memory. Unfortunately, this logical view doesn't work for the register backing store, because the RSE is an asynchronous engine and because UNIX/Linux allow for stack-switching via sigaltstack(2). Specifically, this means that any given stacked register may or may not be backed up by memory in the current stack. If not, then the backing memory may be found in any of the "more inner" (younger) stacks. The routines in this file help manage the discontiguous nature of the register backing store. The routines are completely independent of UNIX/Linux, but each stack frame that switches the backing store is expected to reserve 4 words for use by libunwind. For example, in the Linux sigcontext, sc_fr[0] and sc_fr[1] serve this purpose. */ #include "unwind_i.h" HIDDEN int rbs_switch (struct cursor *c, unw_word_t saved_bsp, unw_word_t saved_bspstore, ia64_loc_t saved_rnat_loc) { struct rbs_area *rbs = &c->rbs_area[c->rbs_curr]; unw_word_t lo, ndirty; debug (10, "%s: (left=%u, curr=%u)\n\t", __FUNCTION__, c->rbs_left_edge, c->rbs_curr); /* Calculate address "lo" at which the backing store starts: */ ndirty = ia64_rse_num_regs (saved_bspstore, saved_bsp); lo = ia64_rse_skip_regs (c->bsp, -ndirty); rbs->size = (rbs->end - lo); /* If the previously-recorded rbs-area is empty we don't need to track it and we can simply overwrite it... */ if (rbs->size) { debug (10, "inner=[0x%lx-0x%lx)\n\t", (long) (rbs->end - rbs->size), (long) rbs->end); c->rbs_curr = (c->rbs_curr + 1) % NELEMS (c->rbs_area); rbs = c->rbs_area + c->rbs_curr; if (c->rbs_curr == c->rbs_left_edge) c->rbs_left_edge = (c->rbs_left_edge + 1) % NELEMS (c->rbs_area); } rbs->end = saved_bspstore; rbs->size = ((unw_word_t) 1) << 63; /* initial guess... */ rbs->rnat_loc = saved_rnat_loc; c->bsp = saved_bsp; debug (10, "outer=[?????????????????\?-0x%llx), rnat@%s\n", (long long) rbs->end, ia64_strloc (rbs->rnat_loc)); return 0; } HIDDEN int rbs_find_stacked (struct cursor *c, unw_word_t regs_to_skip, ia64_loc_t *locp, ia64_loc_t *rnat_locp) { unw_word_t nregs, bsp = c->bsp, curr = c->rbs_curr, n; unw_word_t left_edge = c->rbs_left_edge; #if UNW_DEBUG int reg = 32 + regs_to_skip; #endif while (!rbs_contains (&c->rbs_area[curr], bsp)) { if (curr == left_edge) { debug (1, "%s: could not find register r%d!\n", __FUNCTION__, reg); return -UNW_EBADREG; } n = ia64_rse_num_regs (c->rbs_area[curr].end, bsp); curr = (curr + NELEMS (c->rbs_area) - 1) % NELEMS (c->rbs_area); bsp = ia64_rse_skip_regs (c->rbs_area[curr].end - c->rbs_area[curr].size, n); } while (1) { nregs = ia64_rse_num_regs (bsp, c->rbs_area[curr].end); if (regs_to_skip < nregs) { /* found it: */ unw_word_t addr; addr = ia64_rse_skip_regs (bsp, regs_to_skip); if (locp) *locp = rbs_loc (c->rbs_area + curr, addr); if (rnat_locp) *rnat_locp = rbs_get_rnat_loc (c->rbs_area + curr, addr); return 0; } if (curr == left_edge) { debug (1, "%s: could not find register r%d!\n", __FUNCTION__, reg); return -UNW_EBADREG; } regs_to_skip -= nregs; curr = (curr + NELEMS (c->rbs_area) - 1) % NELEMS (c->rbs_area); bsp = c->rbs_area[curr].end - c->rbs_area[curr].size; } } static inline int get_rnat (struct cursor *c, struct rbs_area *rbs, unw_word_t bsp, ia64_loc_t *__restrict rnat_locp, unw_word_t *__restrict rnatp) { *rnat_locp = rbs_get_rnat_loc (rbs, bsp); return ia64_get (c, *rnat_locp, rnatp); } /* Ensure that the first "nregs" stacked registers are on the current register backing store area. This effectively simulates the effect of a "cover" followed by a "flushrs" for the current frame. Note: This does not modify the rbs_area[] structure in any way. */ HIDDEN int rbs_cover_and_flush (struct cursor *c, unw_word_t nregs) { unw_word_t src_mask, dst_mask, curr, val, left_edge = c->rbs_left_edge; unw_word_t src_bsp, dst_bsp, src_rnat, dst_rnat, dst_rnat_addr; ia64_loc_t src_rnat_loc, dst_rnat_loc; unw_word_t final_bsp; struct rbs_area *dst_rbs; int ret; if (nregs < 1) return 0; /* nothing to do... */ /* Handle the common case quickly: */ curr = c->rbs_curr; dst_rbs = c->rbs_area + curr; final_bsp = ia64_rse_skip_regs (c->bsp, nregs); /* final bsp */ if (likely (rbs_contains (dst_rbs, final_bsp) || curr == left_edge)) { dst_rnat_addr = ia64_rse_rnat_addr (ia64_rse_skip_regs (c->bsp, nregs - 1)); if (rbs_contains (dst_rbs, dst_rnat_addr)) c->loc[IA64_REG_RNAT] = rbs_loc (dst_rbs, dst_rnat_addr); c->bsp = final_bsp; return 0; } /* Skip over regs that are already on the destination rbs-area: */ dst_bsp = src_bsp = dst_rbs->end; if ((ret = get_rnat (c, dst_rbs, dst_bsp, &dst_rnat_loc, &dst_rnat)) < 0) return ret; /* This may seem a bit surprising, but with a hyper-lazy RSE, it's perfectly common that ar.bspstore points to an RNaT slot at the time of a backing-store switch. When that happens, install the appropriate RNaT value (if necessary) and move on to the next slot. */ if (ia64_rse_is_rnat_slot (dst_bsp)) { if ((IA64_IS_REG_LOC (dst_rnat_loc) || IA64_GET_ADDR (dst_rnat_loc) != dst_bsp) && (ret = ia64_put (c, rbs_loc (dst_rbs, dst_bsp), dst_rnat)) < 0) return ret; dst_bsp = src_bsp = dst_bsp + 8; } while (dst_bsp != final_bsp) { while (!rbs_contains (&c->rbs_area[curr], src_bsp)) { /* switch to next rbs-area, adjust src_bsp accordingly: */ if (curr == left_edge) { debug (1, "%s: rbs-underflow while flushing %lu regs, " "src_bsp=0x%lx, dst_bsp=0x%lx\n", __FUNCTION__, (unsigned long) nregs, (unsigned long) src_bsp, (unsigned long) dst_bsp); return -UNW_EBADREG; } curr = (curr + NELEMS (c->rbs_area) - 1) % NELEMS (c->rbs_area); src_bsp = c->rbs_area[curr].end - c->rbs_area[curr].size; } /* OK, found the right rbs-area. Now copy both the register value and its NaT bit: */ if ((ret = get_rnat (c, c->rbs_area + curr, src_bsp, &src_rnat_loc, &src_rnat)) < 0) return ret; src_mask = ((unw_word_t) 1) << ia64_rse_slot_num (src_bsp); dst_mask = ((unw_word_t) 1) << ia64_rse_slot_num (dst_bsp); if (src_rnat & src_mask) dst_rnat |= dst_mask; else dst_rnat &= ~dst_mask; if ((ret = ia64_get (c, rbs_loc (c->rbs_area + curr, src_bsp), &val)) < 0 || (ret = ia64_put (c, rbs_loc (dst_rbs, dst_bsp), val)) < 0) return ret; /* advance src_bsp & dst_bsp to next slot: */ src_bsp += 8; if (ia64_rse_is_rnat_slot (src_bsp)) src_bsp += 8; dst_bsp += 8; if (ia64_rse_is_rnat_slot (dst_bsp)) { if ((ret = ia64_put (c, rbs_loc (dst_rbs, dst_bsp), dst_rnat)) < 0) return ret; dst_bsp += 8; if ((ret = get_rnat (c, dst_rbs, dst_bsp, &dst_rnat_loc, &dst_rnat)) < 0) return ret; } } c->bsp = dst_bsp; c->loc[IA64_REG_RNAT] = dst_rnat_loc; return ia64_put (c, dst_rnat_loc, dst_rnat); }