/* libunwind - a platform-independent unwind library Copyright (C) 2001-2003 Hewlett-Packard Co Contributed by David Mosberger-Tang This file is part of libunwind. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "rse.h" #include "unwind_i.h" #include "offsets.h" #ifndef UNW_REMOTE_ONLY HIDDEN inline int ia64_local_resume (unw_addr_space_t as, unw_cursor_t *cursor, void *arg) { unw_word_t val, sol, sof, pri_unat, loadrs, n, bspstore, pfs; struct cursor *c = (struct cursor *) cursor; struct { unw_word_t r1; unw_word_t r4; unw_word_t r5; unw_word_t r6; unw_word_t r7; unw_word_t r15; unw_word_t r16; unw_word_t r17; unw_word_t r18; } extra; int ret; # define GET_NAT(n) \ do \ { \ ret = ia64_access_reg (c, UNW_IA64_NAT + (n), &val, 0); \ if (ret < 0) \ return ret; \ if (val) \ pri_unat |= (unw_word_t) 1 << n; \ } \ while (0) /* ensure c->pi is up-to-date: */ if ((ret = ia64_make_proc_info (c)) < 0) return ret; /* Copy contents of r4-r7 into "extra", so that their values end up contiguous, so we can use a single (primary-) UNaT value. */ if ((ret = ia64_get (c, c->r4_loc, &extra.r4)) < 0 || (ret = ia64_get (c, c->r5_loc, &extra.r5)) < 0 || (ret = ia64_get (c, c->r6_loc, &extra.r6)) < 0 || (ret = ia64_get (c, c->r7_loc, &extra.r7)) < 0) return ret; /* Form the primary UNaT value: */ pri_unat = 0; GET_NAT (4); GET_NAT(5); GET_NAT (6); GET_NAT(7); n = (((uintptr_t) &extra.r4) / 8 - 4) % 64; pri_unat = (pri_unat << n) | (pri_unat >> (64 - n)); if (unlikely (c->sigcontext_loc)) { struct sigcontext *sc = (struct sigcontext *) c->sigcontext_loc; # define PR_SCRATCH 0xffc0 /* p6-p15 are scratch */ # define PR_PRESERVED (~(PR_SCRATCH | 1)) /* We're returning to a frame that was (either directly or indirectly) interrupted by a signal. We have to restore _both_ "preserved" and "scratch" registers. That doesn't leave us any registers to work with, and the only way we can achieve this is by doing a sigreturn(). Note: it might be tempting to think that we don't have to restore the scratch registers when returning to a frame that was indirectly interrupted by a signal. However, that is not safe because that frame and its descendants could have been using a special convention that stores "preserved" state in scratch registers. For example, the Linux fsyscall convention does this with r11 (to save ar.pfs) and b6 (to save "rp"). */ sc->sc_gr[12] = c->psp; c->psp = (c->sigcontext_loc - c->sigcontext_off); sof = (c->cfm & 0x7f); bspstore = c->bsp; c->bsp = ia64_rse_skip_regs (bspstore, sof); loadrs = 0; sc->sc_ip = c->ip; sc->sc_cfm = c->cfm & (((unw_word_t) 1 << 38) - 1); sc->sc_pr = (c->pr & ~PR_SCRATCH) | (sc->sc_pr & ~PR_PRESERVED); if ((ret = ia64_get (c, c->pfs_loc, &sc->sc_ar_pfs)) < 0 || (ret = ia64_get (c, c->fpsr_loc, &sc->sc_ar_fpsr)) < 0 || (ret = ia64_get (c, c->unat_loc, &sc->sc_ar_unat)) < 0) return ret; sc->sc_gr[1] = c->pi.gp; if (c->eh_valid_mask & 0x1) sc->sc_gr[15] = c->eh_args[0]; if (c->eh_valid_mask & 0x2) sc->sc_gr[16] = c->eh_args[1]; if (c->eh_valid_mask & 0x4) sc->sc_gr[17] = c->eh_args[2]; if (c->eh_valid_mask & 0x8) sc->sc_gr[18] = c->eh_args[3]; } else { /* Account for the fact that _Uia64_install_context() will return via br.ret, which will decrement bsp by size-of-locals. */ if ((ret = ia64_get (c, c->pfs_loc, &pfs)) < 0) return ret; sol = (pfs >> 7) & 0x7f; c->bsp = ia64_rse_skip_regs (c->bsp, sol); loadrs = 0; extra.r1 = c->pi.gp; extra.r15 = c->eh_args[0]; extra.r16 = c->eh_args[1]; extra.r17 = c->eh_args[2]; extra.r18 = c->eh_args[3]; } _Uia64_install_context (c, pri_unat, (unw_word_t *) &extra, loadrs); } #endif /* !UNW_REMOTE_ONLY */ #ifndef UNW_LOCAL_ONLY static inline int remote_install_cursor (struct cursor *c) { printf ("%s: XXX implement me!\n", __FUNCTION__); return -1; } #endif int unw_resume (unw_cursor_t *cursor) { struct cursor *c = (struct cursor *) cursor; #ifdef UNW_LOCAL_ONLY return ia64_local_resume (c->as, cursor, c->as_arg); #else { int ret; if ((ret = remote_install_cursor (c)) < 0) return ret; return (*c->as->acc.resume) (c->as, cursor, c->as_arg); } #endif }