# gzip - evaluation Artifacts saved in `evaluation_artifacts`. ## Performance Using the command line ```bash for i in $(seq 1 100); do perf report 2>&1 >/dev/null | tail -n 1 \ | python ../hackbench/to_report_fmt.py \ | sed 's/^.* & .* & \([0-9]*\) & .*$/\1/g' done ``` we save a sequence of 100 performance readings to some file. Samples: * `eh_elf`: 331134 unw/exec * `vanilla`: 331144 unw/exec Average time/unw: * `eh_elf`: 83 ns * `vanilla`: 1304 ns Standard deviation: * `eh_elf`: 2 ns * `vanilla`: 24 ns Average ratio: 15.7 Ratio uncertainty: 0.8 ## Distibution of `unw_step` issues ### `eh_elf` case * success: 331134 (99.9%) * fallback to DWARF: 2 (0.0%) * fallback to libunwind heuristics: 8 (0.0%) * fail to unwind: 379 (0.1%) * total: 331523 ### `vanilla` case * success: 331136 (99.9%) * fallback to libunwind heuristics: 8 (0.0%) * fail to unwind: 379 (0.1%) * total: 331523